Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning
- URL: http://arxiv.org/abs/2502.14361v1
- Date: Thu, 20 Feb 2025 08:40:09 GMT
- Title: Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning
- Authors: Jiachen Zhu, Congmin Zheng, Jianghao Lin, Kounianhua Du, Ying Wen, Yong Yu, Jun Wang, Weinan Zhang,
- Abstract summary: We introduce Retrieval-Augmented Process Reward Model (RetrievalPRM), a novel framework designed to tackle OOD issues.
By utilizing a two-stage retrieval-enhanced mechanism, RetrievalPRM retrieves semantically similar questions and steps as a warmup.
Our experiments demonstrate that RetrievalPRM outperforms existing baselines across multiple real-world datasets.
- Score: 32.850036320802474
- License:
- Abstract: While large language models (LLMs) have significantly advanced mathematical reasoning, Process Reward Models (PRMs) have been developed to evaluate the logical validity of reasoning steps. However, PRMs still struggle with out-of-distribution (OOD) challenges. This paper identifies key OOD issues, including step OOD, caused by differences in reasoning patterns across model types and sizes, and question OOD, which arises from dataset shifts between training data and real-world problems. To address these issues, we introduce Retrieval-Augmented Process Reward Model (RetrievalPRM), a novel framework designed to tackle these OOD issues. By utilizing a two-stage retrieval-enhanced mechanism, RetrievalPRM retrieves semantically similar questions and steps as a warmup, enhancing PRM's ability to evaluate target steps and improving generalization and reasoning consistency across different models and problem types. Our extensive experiments demonstrate that RetrievalPRM outperforms existing baselines across multiple real-world datasets. Our open-source contributions include a retrieval-enhanced dataset, a tuning framework for PRM training, and the RetrievalPRM model, establishing a new standard for PRM performance.
Related papers
- Reward Models Identify Consistency, Not Causality [54.987590763737145]
State-of-the-art reward models prioritize structural consistency over causal correctness.
Removing the problem statement has minimal impact on reward scores.
altering numerical values or disrupting the reasoning flow significantly affects RM outputs.
arXiv Detail & Related papers (2025-02-20T14:57:14Z) - ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding [25.329712997545794]
We propose Retrieval-Augmented Reasoning through Trustworthy Process Rewarding (ReARTeR)
ReARTeR enhances RAG systems' reasoning capabilities through post-training and test-time scaling.
Experimental results on multi-step reasoning benchmarks demonstrate significant improvements.
arXiv Detail & Related papers (2025-01-14T05:56:26Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRMs) aim to identify and mitigate intermediate errors in the reasoning processes.
We develop a consensus filtering mechanism that effectively integrates Monte Carlo (MC) estimation with Large Language Models (LLMs)
We release a new state-of-the-art PRM that outperforms existing open-source alternatives.
arXiv Detail & Related papers (2025-01-13T13:10:16Z) - PRMBench: A Fine-grained and Challenging Benchmark for Process-Level Reward Models [28.74956741932006]
We introduce PRMBench, a process-level benchmark to assess the fine-grained error detection capabilities of PRMs.
PRMBench comprises 6,216 carefully designed problems and 83,456 step-level labels, evaluating models across multiple dimensions.
arXiv Detail & Related papers (2025-01-06T16:31:45Z) - Process Reward Model with Q-Value Rankings [18.907163177605607]
Process Reward Modeling (PRM) is critical for complex reasoning and decision-making tasks.
We introduce the Process Q-value Model (PQM), a novel framework that redefines PRM in the context of a Markov Decision Process.
PQM optimize Q-value rankings based on a novel comparative loss function, enhancing the model's ability to capture the intricate dynamics among sequential decisions.
arXiv Detail & Related papers (2024-10-15T05:10:34Z) - Semi-Supervised Reward Modeling via Iterative Self-Training [52.48668920483908]
We propose Semi-Supervised Reward Modeling (SSRM), an approach that enhances RM training using unlabeled data.
We demonstrate that SSRM significantly improves reward models without incurring additional labeling costs.
Overall, SSRM substantially reduces the dependency on large volumes of human-annotated data, thereby decreasing the overall cost and time involved in training effective reward models.
arXiv Detail & Related papers (2024-09-10T22:57:58Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.