CrossVTON: Mimicking the Logic Reasoning on Cross-category Virtual Try-on guided by Tri-zone Priors
- URL: http://arxiv.org/abs/2502.14373v1
- Date: Thu, 20 Feb 2025 09:05:35 GMT
- Title: CrossVTON: Mimicking the Logic Reasoning on Cross-category Virtual Try-on guided by Tri-zone Priors
- Authors: Donghao Luo, Yujie Liang, Xu Peng, Xiaobin Hu, Boyuan Jiang, Chengming Xu, Taisong Jin, Chengjie Wang, Yanwei Fu,
- Abstract summary: CrossVTON is a framework for generating robust fitting images for cross-category virtual try-on.
It disentangles the complex reasoning required for cross-category try-on into a structured framework.
It achieves state-of-the-art performance, surpassing existing baselines in both qualitative and quantitative evaluations.
- Score: 63.95051258676488
- License:
- Abstract: Despite remarkable progress in image-based virtual try-on systems, generating realistic and robust fitting images for cross-category virtual try-on remains a challenging task. The primary difficulty arises from the absence of human-like reasoning, which involves addressing size mismatches between garments and models while recognizing and leveraging the distinct functionalities of various regions within the model images. To address this issue, we draw inspiration from human cognitive processes and disentangle the complex reasoning required for cross-category try-on into a structured framework. This framework systematically decomposes the model image into three distinct regions: try-on, reconstruction, and imagination zones. Each zone plays a specific role in accommodating the garment and facilitating realistic synthesis. To endow the model with robust reasoning capabilities for cross-category scenarios, we propose an iterative data constructor. This constructor encompasses diverse scenarios, including intra-category try-on, any-to-dress transformations (replacing any garment category with a dress), and dress-to-any transformations (replacing a dress with another garment category). Utilizing the generated dataset, we introduce a tri-zone priors generator that intelligently predicts the try-on, reconstruction, and imagination zones by analyzing how the input garment is expected to align with the model image. Guided by these tri-zone priors, our proposed method, CrossVTON, achieves state-of-the-art performance, surpassing existing baselines in both qualitative and quantitative evaluations. Notably, it demonstrates superior capability in handling cross-category virtual try-on, meeting the complex demands of real-world applications.
Related papers
- Dress-1-to-3: Single Image to Simulation-Ready 3D Outfit with Diffusion Prior and Differentiable Physics [27.697150953628572]
This paper focuses on 3D garment generation, a key area for applications like virtual try-on with dynamic garment animations.
We introduce Dress-1-to-3, a novel pipeline that reconstructs physics-plausible, simulation-ready separated garments with sewing patterns and humans from an in-the-wild image.
arXiv Detail & Related papers (2025-02-05T18:49:03Z) - ITVTON:Virtual Try-On Diffusion Transformer Model Based on Integrated Image and Text [0.0]
We introduce ITVTON, a method that enhances clothing-character interactions by combining clothing and character images along spatial channels as inputs.
We incorporate integrated textual descriptions from multiple images to boost the realism of the generated visual effects.
In experiments, ITVTON outperforms baseline methods both qualitatively and quantitatively.
arXiv Detail & Related papers (2025-01-28T07:24:15Z) - VortSDF: 3D Modeling with Centroidal Voronoi Tesselation on Signed Distance Field [5.573454319150408]
We introduce a volumetric optimization framework that combines explicit SDF fields with a shallow color network, in order to estimate 3D shape properties over tetrahedral grids.
Experimental results with Chamfer statistics validate this approach with unprecedented reconstruction quality on various scenarios such as objects, open scenes or human.
arXiv Detail & Related papers (2024-07-29T09:46:39Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - AnyFit: Controllable Virtual Try-on for Any Combination of Attire Across Any Scenario [50.62711489896909]
AnyFit surpasses all baselines on high-resolution benchmarks and real-world data by a large gap.
AnyFit's impressive performance on high-fidelity virtual try-ons in any scenario from any image, paves a new path for future research within the fashion community.
arXiv Detail & Related papers (2024-05-28T13:33:08Z) - Zero123-6D: Zero-shot Novel View Synthesis for RGB Category-level 6D Pose Estimation [66.3814684757376]
This work presents Zero123-6D, the first work to demonstrate the utility of Diffusion Model-based novel-view-synthesizers in enhancing RGB 6D pose estimation at category-level.
The outlined method shows reduction in data requirements, removal of the necessity of depth information in zero-shot category-level 6D pose estimation task, and increased performance, quantitatively demonstrated through experiments on the CO3D dataset.
arXiv Detail & Related papers (2024-03-21T10:38:18Z) - Weakly-supervised 3D Pose Transfer with Keypoints [57.66991032263699]
Main challenges of 3D pose transfer are: 1) Lack of paired training data with different characters performing the same pose; 2) Disentangling pose and shape information from the target mesh; 3) Difficulty in applying to meshes with different topologies.
We propose a novel weakly-supervised keypoint-based framework to overcome these difficulties.
arXiv Detail & Related papers (2023-07-25T12:40:24Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - Contextual Encoder-Decoder Network for Visual Saliency Prediction [42.047816176307066]
We propose an approach based on a convolutional neural network pre-trained on a large-scale image classification task.
We combine the resulting representations with global scene information for accurately predicting visual saliency.
Compared to state of the art approaches, the network is based on a lightweight image classification backbone.
arXiv Detail & Related papers (2019-02-18T16:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.