HPS: Hard Preference Sampling for Human Preference Alignment
- URL: http://arxiv.org/abs/2502.14400v1
- Date: Thu, 20 Feb 2025 09:37:41 GMT
- Title: HPS: Hard Preference Sampling for Human Preference Alignment
- Authors: Xiandong Zou, Wanyu Lin, Yuchen Li, Pan Zhou,
- Abstract summary: Hard Preference Sampling (HPS) is a novel framework for robust and efficient human preference alignment.
HPS reduces computational overhead while maintaining alignment quality.
Experiments on HH-RLHF and PKU-Safety datasets validate HPS's effectiveness.
- Score: 55.113864906702865
- License:
- Abstract: Aligning Large Language Model (LLM) responses with human preferences is vital for building safe and controllable AI systems. While preference optimization methods based on Plackett-Luce (PL) and Bradley-Terry (BT) models have shown promise, they face challenges such as poor handling of harmful content, inefficient use of dispreferred responses, and, specifically for PL, high computational costs. To address these issues, we propose Hard Preference Sampling (HPS), a novel framework for robust and efficient human preference alignment. HPS introduces a training loss that prioritizes the most preferred response while rejecting all dispreferred and harmful ones. It emphasizes "hard" dispreferred responses--those closely resembling preferred ones--to enhance the model's rejection capabilities. By leveraging a single-sample Monte Carlo sampling strategy, HPS reduces computational overhead while maintaining alignment quality. Theoretically, HPS improves sample efficiency over existing PL methods and maximizes the reward margin between preferred and dispreferred responses, ensuring clearer distinctions. Experiments on HH-RLHF and PKU-Safety datasets validate HPS's effectiveness, achieving comparable BLEU and reward scores while greatly improving reward margins and thus reducing harmful content generation.
Related papers
- Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
arXiv Detail & Related papers (2024-10-26T14:24:37Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
We propose a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework.
LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm.
Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks.
arXiv Detail & Related papers (2024-05-22T10:21:50Z) - Improving Reinforcement Learning from Human Feedback Using Contrastive Rewards [26.40009657912622]
Reinforcement learning from human feedback (RLHF) is the mainstream paradigm used to align large language models (LLMs) with human preferences.
Yet existing RLHF heavily relies on accurate and informative reward models, which are vulnerable and sensitive to noise from various sources.
In this work, we improve the effectiveness of the reward model by introducing a penalty term on the reward, named as textitcontrastive rewards
arXiv Detail & Related papers (2024-03-12T14:51:57Z) - Preference Ranking Optimization for Human Alignment [90.6952059194946]
Large language models (LLMs) often contain misleading content, emphasizing the need to align them with human values.
Reinforcement learning from human feedback (RLHF) has been employed to achieve this alignment.
We propose Preference Ranking Optimization (PRO) as an efficient SFT algorithm to fine-tune LLMs for human alignment.
arXiv Detail & Related papers (2023-06-30T09:07:37Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.