論文の概要: "Don't Forget the Teachers": Towards an Educator-Centered Understanding of Harms from Large Language Models in Education
- arxiv url: http://arxiv.org/abs/2502.14592v1
- Date: Thu, 20 Feb 2025 14:27:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:28:46.226730
- Title: "Don't Forget the Teachers": Towards an Educator-Centered Understanding of Harms from Large Language Models in Education
- Title(参考訳): 「教師を忘れるな」--教育における大規模言語モデルからのハームの理解に向けて
- Authors: Emma Harvey, Allison Koenecke, Rene F. Kizilcec,
- Abstract要約: 教育技術(教育技術)は、大規模言語モデル(LLM)上に構築された新しい機能をますます取り入れつつある
LLMベースのedtechの下流への影響については、まだ検討されていない。
- 参考スコア(独自算出の注目度): 0.6144680854063939
- License:
- Abstract: Education technologies (edtech) are increasingly incorporating new features built on large language models (LLMs), with the goals of enriching the processes of teaching and learning and ultimately improving learning outcomes. However, the potential downstream impacts of LLM-based edtech remain understudied. Prior attempts to map the risks of LLMs have not been tailored to education specifically, even though it is a unique domain in many respects: from its population (students are often children, who can be especially impacted by technology) to its goals (providing the correct answer may be less important for learners than understanding how to arrive at an answer) to its implications for higher-order skills that generalize across contexts (e.g., critical thinking and collaboration). We conducted semi-structured interviews with six edtech providers representing leaders in the K-12 space, as well as a diverse group of 23 educators with varying levels of experience with LLM-based edtech. Through a thematic analysis, we explored how each group is anticipating, observing, and accounting for potential harms from LLMs in education. We find that, while edtech providers focus primarily on mitigating technical harms, i.e., those that can be measured based solely on LLM outputs themselves, educators are more concerned about harms that result from the broader impacts of LLMs, i.e., those that require observation of interactions between students, educators, school systems, and edtech to measure. Overall, we (1) develop an education-specific overview of potential harms from LLMs, (2) highlight gaps between conceptions of harm by edtech providers and those by educators, and (3) make recommendations to facilitate the centering of educators in the design and development of edtech tools.
- Abstract(参考訳): 教育技術(edtech)は、大規模言語モデル(LLM)上に構築された新しい機能をますます取り入れ、教育と学習のプロセスを強化し、最終的には学習結果を改善することを目的としている。
しかし、LLMベースのedtechの下流への影響については、まだ検討されていない。
LLMのリスクをマップする以前の試みは、多くの点で独特な領域であるにもかかわらず、教育に特化してはいなかった:その人口(学生は技術によって特に影響を受けやすい子供が多い)から目標(正しい回答を提供することは、解答の方法を理解するよりも学習者にとって重要ではないかもしれない)から、文脈(批判的思考、協調など)にまたがって一般化する高次スキルへの意味である。
我々は、K-12分野のリーダーを代表する6つのEdtechプロバイダと、LLMベースのEdtechのさまざまなレベルの経験を持つ23人の教育者の多様なグループと、半構造化インタビューを行った。
テーマ分析を通じて,各グループが教育におけるLSMの潜在的な害を予測し,観察し,説明しているかを考察した。
教育機関は、主に技術的な害を緩和すること、すなわち、LCMの出力のみに基づいて測定できることに焦点を当てているが、教育者は、LLMの広範な影響、すなわち、学生、教育者、学校システム、および教育機関間の相互作用の観察を必要とする害についてより懸念している。
総合的に,(1) LLMによる潜在的害の教育固有の概要,(2) 教育者による害の概念と教育者による害のギャップの顕在化,(3) 教育者の設計・開発における教育者の中心化を促進するための提言を行う。
関連論文リスト
- Position: LLMs Can be Good Tutors in Foreign Language Education [87.88557755407815]
我々は、外国語教育(FLE)において、大きな言語モデル(LLM)が効果的な家庭教師として機能する可能性を主張する。
具体的には、(1)データエンハンサーとして、(2)学習教材の作成や学生シミュレーションとして、(2)タスク予測器として、学習者の評価や学習経路の最適化に、(3)エージェントとして、そして、パーソナライズされた包括的教育を可能にする3つの重要な役割を果たせる。
論文 参考訳(メタデータ) (2025-02-08T06:48:49Z) - Embracing AI in Education: Understanding the Surge in Large Language Model Use by Secondary Students [53.20318273452059]
OpenAIのChatGPTのような大規模言語モデル(LLM)は、新しい教育の道を開いた。
学校制限にもかかわらず,中高生300人以上を対象に調査を行ったところ,学生の70%がLDMを利用していることがわかった。
我々は、対象特化モデル、パーソナライズドラーニング、AI教室など、このような問題に対処するいくつかのアイデアを提案する。
論文 参考訳(メタデータ) (2024-11-27T19:19:34Z) - Dr.Academy: A Benchmark for Evaluating Questioning Capability in Education for Large Language Models [30.759154473275043]
本研究では,大規模言語モデル(LLM)の教師として教育における質問能力を評価するためのベンチマークを紹介する。
関連性, カバレッジ, 代表性, 一貫性の4つの指標を適用し, LLMのアウトプットの教育的品質を評価する。
以上の結果から, GPT-4は一般・人文・理科教育において有意な可能性を秘めていることが示唆された。
論文 参考訳(メタデータ) (2024-08-20T15:36:30Z) - The Life Cycle of Large Language Models: A Review of Biases in Education [3.8757867335422485]
大規模言語モデル(LLM)は、学生や教師にパーソナライズされたサポートを提供するために、教育の文脈でますます採用されている。
教育技術におけるLLMの統合は、教育的不平等を悪化させる可能性のあるアルゴリズムバイアスに対して、新たな懸念を抱いている。
本論は,LLMアプリケーションにおける偏見の複雑な性質を明らかにすることを目的として,その評価のための実践的ガイダンスを提供する。
論文 参考訳(メタデータ) (2024-06-03T18:00:28Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
大規模言語モデル(LLM)は、個々の要求を解釈することでこの問題を解決する可能性を提供する。
本稿では, 数学, 文章, プログラミング, 推論, 知識に基づく質問応答など, 教育能力に関する最近のLLM研究を概観する。
論文 参考訳(メタデータ) (2023-12-27T14:37:32Z) - Impact of Guidance and Interaction Strategies for LLM Use on Learner Performance and Perception [19.335003380399527]
大規模言語モデル(LLM)は、その教育的有用性を探求する研究の増加とともに、有望な道を提供する。
本研究は,LLM支援学習環境の形成において,教師が果たす役割を強調した。
論文 参考訳(メタデータ) (2023-10-13T01:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。