論文の概要: LLM Agents for Education: Advances and Applications
- arxiv url: http://arxiv.org/abs/2503.11733v1
- Date: Fri, 14 Mar 2025 11:53:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-18 16:00:58.956764
- Title: LLM Agents for Education: Advances and Applications
- Title(参考訳): 教育用LLMエージェントの進歩と応用
- Authors: Zhendong Chu, Shen Wang, Jian Xie, Tinghui Zhu, Yibo Yan, Jinheng Ye, Aoxiao Zhong, Xuming Hu, Jing Liang, Philip S. Yu, Qingsong Wen,
- Abstract要約: 大規模言語モデル(LLM)エージェントは、タスクの自動化と多様な教育アプリケーションにおけるイノベーションの推進において、顕著な能力を示した。
本調査は、LLMエージェントの総合的技術概要を提供することを目的としており、学習者や教育者のより大きな利益に対する影響を高めるために、さらなる研究と協力を促進することを目的としている。
- 参考スコア(独自算出の注目度): 49.3663528354802
- License:
- Abstract: Large Language Model (LLM) agents have demonstrated remarkable capabilities in automating tasks and driving innovation across diverse educational applications. In this survey, we provide a systematic review of state-of-the-art research on LLM agents in education, categorizing them into two broad classes: (1) \emph{Pedagogical Agents}, which focus on automating complex pedagogical tasks to support both teachers and students; and (2) \emph{Domain-Specific Educational Agents}, which are tailored for specialized fields such as science education, language learning, and professional development. We comprehensively examine the technological advancements underlying these LLM agents, including key datasets, benchmarks, and algorithmic frameworks that drive their effectiveness. Furthermore, we discuss critical challenges such as privacy, bias and fairness concerns, hallucination mitigation, and integration with existing educational ecosystems. This survey aims to provide a comprehensive technological overview of LLM agents for education, fostering further research and collaboration to enhance their impact for the greater good of learners and educators alike.
- Abstract(参考訳): 大規模言語モデル(LLM)エージェントは、タスクの自動化と多様な教育アプリケーションにおけるイノベーションの推進において、顕著な能力を示した。
本研究では,教育におけるLLMエージェントの最先端研究を体系的に検討し,(1)教員と学生の両方を支援する複雑な教育タスクの自動化に焦点を当てた,(2)理科教育,言語学習,職業開発などの専門分野に特化した「emph{Pedagogical Agents}」の2つのクラスに分類する。
我々は、これらのLLMエージェントの基盤となる技術的進歩を包括的に検証し、その効果を推し進める鍵となるデータセット、ベンチマーク、アルゴリズムフレームワークについて検討する。
さらに、プライバシ、バイアス、公平性の懸念、幻覚の緩和、既存の教育エコシステムとの統合といった重要な課題についても論じる。
本調査は、LLMエージェントの総合的技術概要を提供することを目的としており、学習者や教育者のより大きな利益に対する影響を高めるために、さらなる研究と協力を促進することを目的としている。
関連論文リスト
- MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
我々はMeta MLGymとMLGym-Benchを紹介した。これはAI研究タスクにおける大規模言語モデルの評価と開発のための新しいフレームワークとベンチマークである。
これは機械学習(ML)タスクのための最初のGym環境であり、そのようなエージェントをトレーニングするための強化学習(RL)アルゴリズムの研究を可能にする。
我々は、Claude-3.5-Sonnet、Llama-3.1 405B、GPT-4o、o1-preview、Gemini-1.5 Proなどのベンチマークで、多くのフロンティア大言語モデル(LLM)を評価した。
論文 参考訳(メタデータ) (2025-02-20T12:28:23Z) - Position: LLMs Can be Good Tutors in Foreign Language Education [87.88557755407815]
我々は、外国語教育(FLE)において、大きな言語モデル(LLM)が効果的な家庭教師として機能する可能性を主張する。
具体的には、(1)データエンハンサーとして、(2)学習教材の作成や学生シミュレーションとして、(2)タスク予測器として、学習者の評価や学習経路の最適化に、(3)エージェントとして、そして、パーソナライズされた包括的教育を可能にする3つの重要な役割を果たせる。
論文 参考訳(メタデータ) (2025-02-08T06:48:49Z) - IntelliChain: An Integrated Framework for Enhanced Socratic Method Dialogue with LLMs and Knowledge Graphs [1.810537720642316]
本研究では,ソクラテス教育に適したマルチエージェントシステムの設計とコラボレーションの最適化方法について検討する。
この研究は知識グラフを組み込むことによって、特定の教育内容を扱うLLMの能力を高めた。
論文 参考訳(メタデータ) (2025-01-07T03:32:29Z) - Faculty Perspectives on the Potential of RAG in Computer Science Higher Education [0.0]
仮想教示アシスタントと教示アシスタントの2つのタスクに対する検索補助(RAG)アプリケーションを開発した。
本研究は,LLMに基づくRAGの教育への応用に関する教員のフィードバックを収集した初めてのものである。
論文 参考訳(メタデータ) (2024-07-28T14:55:22Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - Towards Generalizable Agents in Text-Based Educational Environments: A Study of Integrating RL with LLMs [22.568925103893182]
我々は、強化学習(RL)と大言語モデル(LLM)を統合することにより、オープンエンドテキストベースの学習環境におけるエージェントの一般化能力の向上を目指す。
PharmaSimTextは、診断会話を実践するために設計された、PharmaSim仮想薬局環境から派生した新しいベンチマークである。
以上の結果から, RLをベースとしたエージェントは, タスク完了に優れるが, 品質診断質問の欠如が示唆された。
論文 参考訳(メタデータ) (2024-04-29T14:53:48Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - The Robots are Here: Navigating the Generative AI Revolution in
Computing Education [4.877774347152004]
人工知能(AI)の最近の進歩は、コンピューティングを根本的に再構築している。
大規模言語モデル(LLM)は、ソースコードと自然言語命令を効果的に生成、解釈できるようになった。
これらの能力は、教育者がこれらの課題にどう対処すべきかという緊急の疑問を引き起こしている。
論文 参考訳(メタデータ) (2023-10-01T12:54:37Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
本稿では,Language-Assisted Multi-Modalインストラクションチューニングデータセット,フレームワーク,ベンチマークを提案する。
我々の目標は、MLLMのトレーニングと評価のための成長するエコシステムとしてLAMMを確立することです。
本稿では,2次元および3次元視覚のための広範囲な視覚タスクをカバーする包括的データセットとベンチマークを提案する。
論文 参考訳(メタデータ) (2023-06-11T14:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。