論文の概要: Spectral decomposition-assisted multi-study factor analysis
- arxiv url: http://arxiv.org/abs/2502.14600v1
- Date: Thu, 20 Feb 2025 14:33:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 17:44:07.256667
- Title: Spectral decomposition-assisted multi-study factor analysis
- Title(参考訳): 分光分解支援マルチスタディファクター解析
- Authors: Lorenzo Mauri, Niccolò Anceschi, David B. Dunson,
- Abstract要約: 免疫細胞間の遺伝子関連性に関する3つの研究を統合する方法が適用された。
ファクタローディングの条件付き分布は、結果にまたがる単純な積形式を持つ。
- 参考スコア(独自算出の注目度): 7.925272817108244
- License:
- Abstract: This article focuses on covariance estimation for multi-study data. Popular approaches employ factor-analytic terms with shared and study-specific loadings that decompose the variance into (i) a shared low-rank component, (ii) study-specific low-rank components, and (iii) a diagonal term capturing idiosyncratic variability. Our proposed methodology estimates the latent factors via spectral decompositions and infers the factor loadings via surrogate regression tasks, avoiding identifiability and computational issues of existing alternatives. Reliably inferring shared vs study-specific components requires novel developments that are of independent interest. The approximation error decreases as the sample size and the data dimension diverge, formalizing a blessing of dimensionality. Conditionally on the factors, loadings and residual error variances are inferred via conjugate normal-inverse gamma priors. The conditional posterior distribution of factor loadings has a simple product form across outcomes, facilitating parallelization. We show favorable asymptotic properties, including central limit theorems for point estimators and posterior contraction, and excellent empirical performance in simulations. The methods are applied to integrate three studies on gene associations among immune cells.
- Abstract(参考訳): 本稿では,マルチスタディデータの共分散推定について述べる。
一般的なアプローチでは、分散を分解する共有および研究固有の負荷を伴う因子分析用語が採用されている。
(i)共有低ランクコンポーネント
(二)研究固有の低ランク成分、及び
三 慣用的変動をとらえる対角的用語。
提案手法は,スペクトル分解による潜在因子を推定し,既存の代替品の識別可能性や計算上の問題を回避し,回帰タスクによる因子負荷を推定する。
共有と研究固有のコンポーネントを確実に推測するには、独立した関心を持つ新しい開発が必要である。
近似誤差はサンプルサイズとデータ次元が分岐するにつれて減少し、次元の祝福が定式化される。
条件付きでは、負荷と残留誤差の分散は共役正規逆ガンマ前駆体を介して推測される。
因子負荷の条件付き後部分布は、結果にまたがる単純な積形式を持ち、並列化を容易にする。
点推定器の中央極限定理や後部収縮を含む漸近特性を示し,シミュレーションにおいて優れた経験的性能を示す。
本手法は免疫細胞間の遺伝子関連性に関する3つの研究を統合するために応用される。
関連論文リスト
- Linear causal disentanglement via higher-order cumulants [0.0]
複数の文脈におけるデータへのアクセスを前提として,線形因果不整合の識別可能性について検討した。
各潜伏変数に対する1つの完全な介入が十分であり、完全な介入の下でパラメータを復元するのに必要となる最悪の場合を示す。
論文 参考訳(メタデータ) (2024-07-05T15:53:16Z) - Causal Inference for Genomic Data with Multiple Heterogeneous Outcomes [1.5845117761091052]
複数の導出結果を持つ2つのロバストな推定のための一般的な半パラメトリックフレームワークを提案する。
分析を標準化された平均処理効果と量子処理効果に専門化する。
論文 参考訳(メタデータ) (2024-04-14T02:07:14Z) - Trade-off Between Dependence and Complexity for Nonparametric Learning
-- an Empirical Process Approach [10.27974860479791]
データが時間的依存を示す多くのアプリケーションでは、対応する経験的プロセスは理解されていない。
標準的な$beta/rho$-mixingの仮定の下では、経験過程の期待上限に一般化する。
長距離依存下であっても、i.d.設定と同じ速度で達成できることが示される。
論文 参考訳(メタデータ) (2024-01-17T05:08:37Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
この研究は、メカニズムのスパーシティ正則化(英語版)と呼ばれる、アンタングルメントの新たな原理を導入する。
本稿では,潜在要因を同時に学習することで,絡み合いを誘発する表現学習手法を提案する。
学習した因果グラフをスパースに規則化することにより、潜伏因子を復元できることを示す。
論文 参考訳(メタデータ) (2024-01-10T02:38:21Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
本研究では,所定の点における条件分散の値に関する仮説を検証し,留置手順を開発する。
既存の手法とは異なり、提案手法は分散自体の値だけでなく、対応する分散予測器の不確実性についても考慮することができる。
論文 参考訳(メタデータ) (2023-09-28T13:04:11Z) - Simultaneous inference for generalized linear models with unmeasured confounders [0.0]
本稿では,構造を利用して線形射影を3つの重要な段階に統合する,統一的な統計的推定と推測の枠組みを提案する。
サンプルおよび応答サイズとして$z$-testsの効果的なType-Iエラー制御が無限大に近づくことを示す。
論文 参考訳(メタデータ) (2023-09-13T18:53:11Z) - Disentanglement of Correlated Factors via Hausdorff Factorized Support [53.23740352226391]
本稿では,因子分布ではなく,因子化支援を助長する緩やかな解離基準,HFS(Hausdorff Factorized Support)基準を提案する。
本研究では,HFSを用いることにより,様々な相関設定やベンチマークにおいて,接地構造因子の絡み合いと回復が一貫して促進されることを示す。
論文 参考訳(メタデータ) (2022-10-13T20:46:42Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
統計的汎関数に対するガトー微分を有限差分法で近似する構成的アルゴリズムについて検討する。
本研究では,確率分布を事前知識がないが,データから推定する必要がある場合について検討する。
論文 参考訳(メタデータ) (2022-08-29T16:16:22Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
我々は、異なる、しかし相関のある特徴に基づいて訓練された一般化線形モデルの集合における揺らぎの研究の理論を開発する。
一般凸損失と高次元限界における正則化のための経験的リスク最小化器の結合分布の完全な記述を提供する。
論文 参考訳(メタデータ) (2022-01-31T17:44:58Z) - Variance Minimization in the Wasserstein Space for Invariant Causal
Prediction [72.13445677280792]
そこで本研究では,ICPで行ったアプローチを,予測器数で線形にスケールする一連の非パラメトリックテストとして再検討する。
これらのテストはそれぞれ、最適輸送理論の道具から導かれる新しい損失関数の最小化に依存している。
我々は,本手法が同定可能な直接原因の集合を回復できるという軽微な仮定の下で証明し,他のベンチマーク因果探索アルゴリズムと競合することを示す。
論文 参考訳(メタデータ) (2021-10-13T22:30:47Z) - Latent Causal Invariant Model [128.7508609492542]
現在の教師付き学習は、データ適合プロセス中に急激な相関を学習することができる。
因果予測を求める潜在因果不変モデル(LaCIM)を提案する。
論文 参考訳(メタデータ) (2020-11-04T10:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。