FIND: Fine-grained Information Density Guided Adaptive Retrieval-Augmented Generation for Disease Diagnosis
- URL: http://arxiv.org/abs/2502.14614v1
- Date: Thu, 20 Feb 2025 14:52:36 GMT
- Title: FIND: Fine-grained Information Density Guided Adaptive Retrieval-Augmented Generation for Disease Diagnosis
- Authors: Mingyi Jia, Junwen Duan, Yan Song, Jianxin Wang,
- Abstract summary: FIND (textbfFine-grained textbfInformation textbfDensity Guided Adaptive RAG) is a novel framework that improves the reliability of RAG in disease diagnosis scenarios.
- Score: 13.806201934732321
- License:
- Abstract: Retrieval-Augmented Large Language Models (LLMs), which integrate external knowledge into LLMs, have shown remarkable performance in various medical domains, including clinical diagnosis. However, existing RAG methods struggle to effectively assess task difficulty to make retrieval decisions, thereby failing to meet the clinical requirements for balancing efficiency and accuracy. So in this paper, we propose FIND (\textbf{F}ine-grained \textbf{In}formation \textbf{D}ensity Guided Adaptive RAG), a novel framework that improves the reliability of RAG in disease diagnosis scenarios. FIND incorporates a fine-grained adaptive control module to determine whether retrieval is necessary based on the information density of the input. By optimizing the retrieval process and implementing a knowledge filtering module, FIND ensures that the retrieval is better suited to clinical scenarios. Experiments on three Chinese electronic medical record datasets demonstrate that FIND significantly outperforms various baseline methods, highlighting its effectiveness in clinical diagnosis tasks.
Related papers
- Step-by-Step Guidance to Differential Anemia Diagnosis with Real-World Data and Deep Reinforcement Learning [1.5272023683653024]
Clinical diagnostic guidelines outline the key questions to answer to reach a diagnosis.
We aim to develop a model that learns from electronic health records to determine the optimal sequence of actions for accurate diagnosis.
arXiv Detail & Related papers (2024-12-03T08:45:50Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.
Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.
We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - medIKAL: Integrating Knowledge Graphs as Assistants of LLMs for Enhanced Clinical Diagnosis on EMRs [13.806201934732321]
medIKAL combines Large Language Models (LLMs) with knowledge graphs (KGs) to enhance diagnostic capabilities.
medIKAL assigns weighted importance to entities in medical records based on their type, enabling precise localization of candidate diseases within KGs.
We validated medIKAL's effectiveness through extensive experiments on a newly introduced open-sourced Chinese EMR dataset.
arXiv Detail & Related papers (2024-06-20T13:56:52Z) - EndoOOD: Uncertainty-aware Out-of-distribution Detection in Capsule
Endoscopy Diagnosis [11.82953216903558]
Wireless capsule endoscopy (WCE) is a non-invasive diagnostic procedure that enables visualization of the gastrointestinal (GI) tract.
Deep learning-based methods have shown effectiveness in disease screening using WCE data.
Existing capsule endoscopy classification methods mostly rely on pre-defined categories.
arXiv Detail & Related papers (2024-02-18T06:54:51Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Scalable Online Disease Diagnosis via Multi-Model-Fused Actor-Critic
Reinforcement Learning [9.274138493400436]
For those seeking healthcare advice online, AI based dialogue agents capable of interacting with patients to perform automatic disease diagnosis are a viable option.
This can be formulated as a problem of sequential feature (symptom) selection and classification for which reinforcement learning (RL) approaches have been proposed as a natural solution.
We propose a Multi-Model-Fused Actor-Critic (MMF-AC) RL framework that consists of a generative actor network and a diagnostic critic network.
arXiv Detail & Related papers (2022-06-08T03:06:16Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.