論文の概要: Edit Once, Update Everywhere: A Simple Framework for Cross-Lingual Knowledge Synchronization in LLMs
- arxiv url: http://arxiv.org/abs/2502.14645v1
- Date: Thu, 20 Feb 2025 15:32:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:29:44.725420
- Title: Edit Once, Update Everywhere: A Simple Framework for Cross-Lingual Knowledge Synchronization in LLMs
- Title(参考訳): LLMにおける言語間知識同期のためのシンプルなフレームワーク
- Authors: Yuchen Wu, Liang Ding, Li Shen, Dacheng Tao,
- Abstract要約: 我々は、シンプルで実用的なSOTAレシピであるクロス言語知識民主主義編集(X-KDE)を提案する。
X-KDEは、支配的な言語から他の言語への知識の伝達を効果的に行うように設計されている。
Bi-ZsRE と MzsRE のベンチマーク実験により、X-KDE は言語間性能を大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 60.12222055772508
- License:
- Abstract: Knowledge editing allows for efficient adaptation of large language models (LLMs) to new information or corrections without requiring full retraining. However, prior methods typically focus on either single-language editing or basic multilingual editing, failing to achieve true cross-linguistic knowledge synchronization. To address this, we present a simple and practical state-of-the-art (SOTA) recipe Cross-Lingual Knowledge Democracy Edit (X-KDE), designed to propagate knowledge from a dominant language to other languages effectively. Our X-KDE comprises two stages: (i) Cross-lingual Edition Instruction Tuning (XE-IT), which fine-tunes the model on a curated parallel dataset to modify in-scope knowledge while preserving unrelated information, and (ii) Target-language Preference Optimization (TL-PO), which applies advanced optimization techniques to ensure consistency across languages, fostering the transfer of updates. Additionally, we contribute a high-quality, cross-lingual dataset, specifically designed to enhance knowledge transfer across languages. Extensive experiments on the Bi-ZsRE and MzsRE benchmarks show that X-KDE significantly enhances cross-lingual performance, achieving an average improvement of +8.19%, while maintaining high accuracy in monolingual settings.
- Abstract(参考訳): 知識編集により、大きな言語モデル(LLM)を完全なリトレーニングを必要とせずに、新しい情報や修正に効率的に適応することができる。
しかし、従来の手法は一般的に単一言語編集か基本多言語編集に重点を置いており、真の言語間知識同期を達成できなかった。
そこで本研究では,支配的な言語から他言語への知識の伝達を目的とした,シンプルで実用的なSOTAレシピであるクロス言語知識民主主義編集(X-KDE)を提案する。
我々のX-KDEは2つの段階から構成される。
一 相互言語版指導チューニング(XE-IT)
(ii) 言語間の整合性を確保するために高度な最適化手法を適用し,更新の伝達を促進することを目的としたTL-PO(Target-Language Preference Optimization)。
さらに,言語間の知識伝達を促進するために特別に設計された,高品質な言語間データセットも提供します。
Bi-ZsREとMzsREのベンチマークによる大規模な実験により、X-KDEは言語間性能を著しく向上し、平均で+8.19%向上し、モノリンガル設定では高い精度を維持した。
関連論文リスト
- Cross-Lingual Multi-Hop Knowledge Editing [53.028586843468915]
言語横断的な設定で様々なSoTA知識編集技術の性能を計測・解析するための多言語多言語知識編集パラダイムを提案する。
具体的には、知識編集能力を測定するために並列言語間ベンチマーク CROLIN-MQUAKE を作成します。
次に,言語間マルチホップ知識編集システムであるCLEVER-CKEを提案する。
論文 参考訳(メタデータ) (2024-07-14T17:18:16Z) - MEMLA: Enhancing Multilingual Knowledge Editing with Neuron-Masked Low-Rank Adaptation [18.087144677674786]
我々は多言語知識編集(MKE)に重点を置いており、複数の言語にまたがる更新の伝播が必要である。
12言語からなる新しいデータセットであるMKEB(Multilingual Knowledge Editing Benchmark)を紹介する。
また,ニューロンマスト型低ランク適応(MEMLA)による知識編集を促進する手法を提案する。
論文 参考訳(メタデータ) (2024-06-17T14:03:50Z) - MPN: Leveraging Multilingual Patch Neuron for Cross-lingual Model
Editing [10.81072864833299]
本稿では,多言語パッチニューロンを訓練し,言語間知識を蓄積する簡易かつ効果的な方法を提案する。
既存のアプローチに容易に適応して、言語間編集機能を強化することができる。
論文 参考訳(メタデータ) (2024-01-06T10:40:24Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Continual Learning in Multilingual NMT via Language-Specific Embeddings [92.91823064720232]
共有語彙を小さな言語固有の語彙に置き換え、新しい言語の並列データに新しい埋め込みを微調整する。
元のモデルのパラメータは変更されていないため、初期言語の性能は劣化しない。
論文 参考訳(メタデータ) (2021-10-20T10:38:57Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
言語間の要約は、ソース言語の記事に対する対象言語の要約を作成することを目的としている。
本稿では,翻訳のような言語間タスクと,マスク付き言語モデルのようなモノリンガルタスクの両方を活用する混合言語事前学習に基づくソリューションを提案する。
本モデルでは,2.82(中国語)と1.15(中国語,英語)のROUGE-1スコアを最先端の結果に対して改善する。
論文 参考訳(メタデータ) (2020-10-18T00:21:53Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。