ReVision: A Dataset and Baseline VLM for Privacy-Preserving Task-Oriented Visual Instruction Rewriting
- URL: http://arxiv.org/abs/2502.14780v1
- Date: Thu, 20 Feb 2025 18:01:41 GMT
- Title: ReVision: A Dataset and Baseline VLM for Privacy-Preserving Task-Oriented Visual Instruction Rewriting
- Authors: Abhijit Mishra, Richard Noh, Hsiang Fu, Mingda Li, Minji Kim,
- Abstract summary: This paper explores Visual Instruction Rewriting, a novel approach that transforms multimodal instructions into text-only commands.
We present a dataset of over 39,000 examples across 14 domains and develop a compact VLM, pretrained on image captioning datasets.
Experimental results, evaluated through NLG metrics such as BLEU, METEOR, and ROUGE, demonstrate that even a quantized version of the model can achieve effective instruction rewriting.
- Score: 5.657347835913079
- License:
- Abstract: Efficient and privacy-preserving multimodal interaction is essential as AR, VR, and modern smartphones with powerful cameras become primary interfaces for human-computer communication. Existing powerful large vision-language models (VLMs) enabling multimodal interaction often rely on cloud-based processing, raising significant concerns about (1) visual privacy by transmitting sensitive vision data to servers, and (2) their limited real-time, on-device usability. This paper explores Visual Instruction Rewriting, a novel approach that transforms multimodal instructions into text-only commands, allowing seamless integration of lightweight on-device instruction rewriter VLMs (250M parameters) with existing conversational AI systems, enhancing vision data privacy. To achieve this, we present a dataset of over 39,000 examples across 14 domains and develop a compact VLM, pretrained on image captioning datasets and fine-tuned for instruction rewriting. Experimental results, evaluated through NLG metrics such as BLEU, METEOR, and ROUGE, along with semantic parsing analysis, demonstrate that even a quantized version of the model (<500MB storage footprint) can achieve effective instruction rewriting, thus enabling privacy-focused, multimodal AI applications.
Related papers
- Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks [89.24440488456405]
VisionLLM v2 is an end-to-end generalist multimodal large model (MLLM)
It unifies visual perception, understanding, and generation within a single framework.
arXiv Detail & Related papers (2024-06-12T16:44:50Z) - Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want [58.091825321168514]
We introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting.
Specifically, we propose a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM.
To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench.
arXiv Detail & Related papers (2024-03-29T16:26:20Z) - UReader: Universal OCR-free Visually-situated Language Understanding
with Multimodal Large Language Model [108.85584502396182]
We propose UReader, a first exploration of universal OCR-free visually-situated language understanding based on the Multimodal Large Language Model (MLLM)
By leveraging the shallow text recognition ability of the MLLM, we only finetuned 1.2% parameters.
Our single model achieves state-of-the-art ocr-free performance in 8 out of 10 visually-situated language understanding tasks.
arXiv Detail & Related papers (2023-10-08T11:33:09Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
Vision-language models (VLMs) have shown powerful capabilities in visual question answering and reasoning tasks.
In this paper, we demonstrate a method of aligning the embedding spaces of different modalities to the vision embedding space.
We show that using multiple modalities as input improves the VLM's scene understanding and enhances its overall performance in various tasks.
arXiv Detail & Related papers (2023-08-31T06:53:55Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - MIMIC-IT: Multi-Modal In-Context Instruction Tuning [44.879418596312554]
We present a dataset comprising 2.8 million multimodal instruction-response pairs, with 2.2 million unique instructions derived from images and videos.
Using the MIMIC-IT dataset, it has been observed that Otter demonstrates remarkable proficiency in multi-modal perception, reasoning, and in-context learning.
We release the MIMIC-IT dataset, instruction-response collection pipeline, benchmarks, and the Otter model.
arXiv Detail & Related papers (2023-06-08T17:59:56Z) - Applying Deep-Learning-Based Computer Vision to Wireless Communications:
Methodologies, Opportunities, and Challenges [100.45137961106069]
Deep learning (DL) has seen great success in the computer vision (CV) field.
This article introduces ideas about applying DL-based CV in wireless communications.
arXiv Detail & Related papers (2020-06-10T11:37:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.