A Neural Operator-Based Emulator for Regional Shallow Water Dynamics
- URL: http://arxiv.org/abs/2502.14782v1
- Date: Thu, 20 Feb 2025 18:02:44 GMT
- Title: A Neural Operator-Based Emulator for Regional Shallow Water Dynamics
- Authors: Peter Rivera-Casillas, Sourav Dutta, Shukai Cai, Mark Loveland, Kamaljyoti Nath, Khemraj Shukla, Corey Trahan, Jonghyun Lee, Matthew Farthing, Clint Dawson,
- Abstract summary: Coastal regions are particularly vulnerable to the impacts of rising sea levels and extreme weather events.
Accurate real-time forecasting of hydrodynamic processes in these areas is essential for infrastructure planning and climate adaptation.
We present a novel autoregressive neural emulator that employs dimensionality reduction to efficiently approximate high-dimensional numerical solvers.
- Score: 5.09419041446345
- License:
- Abstract: Coastal regions are particularly vulnerable to the impacts of rising sea levels and extreme weather events. Accurate real-time forecasting of hydrodynamic processes in these areas is essential for infrastructure planning and climate adaptation. In this study, we present the Multiple-Input Temporal Operator Network (MITONet), a novel autoregressive neural emulator that employs dimensionality reduction to efficiently approximate high-dimensional numerical solvers for complex, nonlinear problems that are governed by time-dependent, parameterized partial differential equations. Although MITONet is applicable to a wide range of problems, we showcase its capabilities by forecasting regional tide-driven dynamics described by the two-dimensional shallow-water equations, while incorporating initial conditions, boundary conditions, and a varying domain parameter. We demonstrate MITONet's performance in a real-world application, highlighting its ability to make accurate predictions by extrapolating both in time and parametric space.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Super-Resolution works for coastal simulations [6.263499279406057]
High-resolution simulations are necessary to advance understanding of many processes, specifically, to predict flooding from tsunamis and storm surges.
We propose a Deep Network for Super-resolution enhancement to efficiently learn high-resolution numerical solutions.
Our method shows superior super-resolution quality and fast computation compared to the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-29T14:16:13Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
We present ClimODE, a continuous-time process that implements key principle of statistical mechanics.
ClimODE models precise weather evolution with value-conserving dynamics, learning global weather transport as a neural flow.
Our approach outperforms existing data-driven methods in global, regional forecasting with an order of magnitude smaller parameterization.
arXiv Detail & Related papers (2024-04-15T06:38:21Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Learning Efficient Surrogate Dynamic Models with Graph Spline Networks [28.018442945654364]
We present GraphSplineNets, a novel deep-learning method to speed up the forecasting of physical systems.
Our method uses two differentiable spline collocation methods to efficiently predict response at any location in time and space.
arXiv Detail & Related papers (2023-10-25T06:32:47Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Towards Fast Simulation of Environmental Fluid Mechanics with
Multi-Scale Graph Neural Networks [0.0]
We introduce MultiScaleGNN, a novel multi-scale graph neural network model for learning to infer unsteady continuum mechanics.
We demonstrate this method on advection problems and incompressible fluid dynamics, both fundamental phenomena in oceanic and atmospheric processes.
Simulations obtained with MultiScaleGNN are between two and four orders of magnitude faster than those on which it was trained.
arXiv Detail & Related papers (2022-05-05T13:33:03Z) - Multioutput Gaussian Processes with Functional Data: A Study on Coastal
Flood Hazard Assessment [0.0]
We introduce a surrogate model that accounts for time-varying inputs and provides information on spatially varying inland flooding.
In several experiments, we demonstrate the versatility of the model for both learning maps and inferring unobserved maps.
We conclude that our framework is a promising approach for forecast and early-warning systems.
arXiv Detail & Related papers (2020-07-28T08:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.