Vision-Enhanced Time Series Forecasting via Latent Diffusion Models
- URL: http://arxiv.org/abs/2502.14887v1
- Date: Sun, 16 Feb 2025 14:15:06 GMT
- Title: Vision-Enhanced Time Series Forecasting via Latent Diffusion Models
- Authors: Weilin Ruan, Siru Zhong, Haomin Wen, Yuxuan Liang,
- Abstract summary: LDM4TS is a novel framework that leverages the powerful image reconstruction capabilities of latent diffusion models for vision-enhanced time series forecasting.<n>We are the first to use complementary transformation techniques to convert time series into multi-view visual representations.
- Score: 12.54316645614762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have recently emerged as powerful frameworks for generating high-quality images. While recent studies have explored their application to time series forecasting, these approaches face significant challenges in cross-modal modeling and transforming visual information effectively to capture temporal patterns. In this paper, we propose LDM4TS, a novel framework that leverages the powerful image reconstruction capabilities of latent diffusion models for vision-enhanced time series forecasting. Instead of introducing external visual data, we are the first to use complementary transformation techniques to convert time series into multi-view visual representations, allowing the model to exploit the rich feature extraction capabilities of the pre-trained vision encoder. Subsequently, these representations are reconstructed using a latent diffusion model with a cross-modal conditioning mechanism as well as a fusion module. Experimental results demonstrate that LDM4TS outperforms various specialized forecasting models for time series forecasting tasks.
Related papers
- Unified Multimodal Discrete Diffusion [78.48930545306654]
Multimodal generative models that can understand and generate across multiple modalities are dominated by autoregressive (AR) approaches.
We explore discrete diffusion models as a unified generative formulation in the joint text and image domain.
We present the first Unified Multimodal Discrete Diffusion (UniDisc) model which is capable of jointly understanding and generating text and images.
arXiv Detail & Related papers (2025-03-26T17:59:51Z) - Harnessing Vision Models for Time Series Analysis: A Survey [72.09716244582684]
This survey discusses the advantages of vision models over LLMs in time series analysis.<n>It provides a comprehensive and in-depth overview of the existing methods, with dual views of detailed taxonomy.<n>We address the challenges in the pre- and post-processing steps involved in this framework.
arXiv Detail & Related papers (2025-02-13T00:42:11Z) - Exploring Representation-Aligned Latent Space for Better Generation [86.45670422239317]
We introduce ReaLS, which integrates semantic priors to improve generation performance.
We show that fundamental DiT and SiT trained on ReaLS can achieve a 15% improvement in FID metric.
The enhanced semantic latent space enables more perceptual downstream tasks, such as segmentation and depth estimation.
arXiv Detail & Related papers (2025-02-01T07:42:12Z) - Dual Diffusion for Unified Image Generation and Understanding [32.7554623473768]
We propose a large-scale and fully end-to-end diffusion model for multi-modal understanding and generation.
We leverage a cross-modal maximum likelihood estimation framework that simultaneously trains the conditional likelihoods of both images and text jointly.
Our model attained competitive performance compared to recent unified image understanding and generation models.
arXiv Detail & Related papers (2024-12-31T05:49:00Z) - TimeLDM: Latent Diffusion Model for Unconditional Time Series Generation [2.4454605633840143]
Time series generation is a crucial research topic in the area of decision-making systems.
Recent approaches focus on learning in the data space to model time series information.
We propose TimeLDM, a novel latent diffusion model for high-quality time series generation.
arXiv Detail & Related papers (2024-07-05T01:47:20Z) - Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting [8.232475807691255]
We propose a novel Diffusion (StochDiff) model which learns data-driven prior knowledge at each time step.
The learnt prior knowledge helps the model to capture complex temporal dynamics and the inherent uncertainty of the data.
arXiv Detail & Related papers (2024-06-05T00:13:38Z) - 4Diffusion: Multi-view Video Diffusion Model for 4D Generation [55.82208863521353]
Current 4D generation methods have achieved noteworthy efficacy with the aid of advanced diffusion generative models.
We propose a novel 4D generation pipeline, namely 4Diffusion, aimed at generating spatial-temporally consistent 4D content from a monocular video.
arXiv Detail & Related papers (2024-05-31T08:18:39Z) - DEEM: Diffusion Models Serve as the Eyes of Large Language Models for Image Perception [66.88792390480343]
We propose DEEM, a simple but effective approach that utilizes the generative feedback of diffusion models to align the semantic distributions of the image encoder.
DEEM exhibits enhanced robustness and a superior capacity to alleviate model hallucinations while utilizing fewer trainable parameters, less pre-training data, and a smaller base model size.
arXiv Detail & Related papers (2024-05-24T05:46:04Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? [49.84679952948808]
Recent works show promising results by simply fine-tuning T2I diffusion models for dense perception tasks.<n>We conduct a thorough investigation into critical factors that affect transfer efficiency and performance when using diffusion priors.<n>Our work culminates in the development of GenPercept, an effective deterministic one-step fine-tuning paradigm tailed for dense visual perception tasks.
arXiv Detail & Related papers (2024-03-10T04:23:24Z) - The Rise of Diffusion Models in Time-Series Forecasting [5.808096811856718]
The paper includes comprehensive background information on diffusion models, detailing their conditioning methods and reviewing their use in time-series forecasting.
The analysis covers 11 specific time-series implementations, the intuition and theory behind them, the effectiveness on different datasets, and a comparison among each other.
arXiv Detail & Related papers (2024-01-05T11:35:10Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data.
Our method relies on a continuous-time-dependent model of the series' evolution dynamics.
A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows.
arXiv Detail & Related papers (2023-06-09T13:20:04Z) - Leveraging Image-based Generative Adversarial Networks for Time Series
Generation [4.541582055558865]
We propose a two-dimensional image representation for time series, the Extended Intertemporal Return Plot (XIRP)
Our approach captures the intertemporal time series dynamics in a scale-invariant and invertible way, reducing training time and improving sample quality.
arXiv Detail & Related papers (2021-12-15T11:55:11Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.