Leveraging Image-based Generative Adversarial Networks for Time Series
Generation
- URL: http://arxiv.org/abs/2112.08060v2
- Date: Thu, 31 Aug 2023 12:41:13 GMT
- Title: Leveraging Image-based Generative Adversarial Networks for Time Series
Generation
- Authors: Justin Hellermann, Stefan Lessmann
- Abstract summary: We propose a two-dimensional image representation for time series, the Extended Intertemporal Return Plot (XIRP)
Our approach captures the intertemporal time series dynamics in a scale-invariant and invertible way, reducing training time and improving sample quality.
- Score: 4.541582055558865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models for images have gained significant attention in computer
vision and natural language processing due to their ability to generate
realistic samples from complex data distributions. To leverage the advances of
image-based generative models for the time series domain, we propose a
two-dimensional image representation for time series, the Extended
Intertemporal Return Plot (XIRP). Our approach captures the intertemporal time
series dynamics in a scale-invariant and invertible way, reducing training time
and improving sample quality. We benchmark synthetic XIRPs obtained by an
off-the-shelf Wasserstein GAN with gradient penalty (WGAN-GP) to other image
representations and models regarding similarity and predictive ability metrics.
Our novel, validated image representation for time series consistently and
significantly outperforms a state-of-the-art RNN-based generative model
regarding predictive ability. Further, we introduce an improved stochastic
inversion to substantially improve simulation quality regardless of the
representation and provide the prospect of transfer potentials in other
domains.
Related papers
- D2C: Unlocking the Potential of Continuous Autoregressive Image Generation with Discrete Tokens [80.75893450536577]
We propose D2C, a novel two-stage method to enhance model generation capacity.
In the first stage, the discrete-valued tokens representing coarse-grained image features are sampled by employing a small discrete-valued generator.
In the second stage, the continuous-valued tokens representing fine-grained image features are learned conditioned on the discrete token sequence.
arXiv Detail & Related papers (2025-03-21T13:58:49Z) - Frequency Autoregressive Image Generation with Continuous Tokens [31.833852108014312]
We introduce the frequency progressive autoregressive (textbfFAR) paradigm and instantiate FAR with the continuous tokenizer.
We demonstrate the efficacy of FAR through comprehensive experiments on the ImageNet dataset.
arXiv Detail & Related papers (2025-03-07T10:34:04Z) - Vision-Enhanced Time Series Forecasting via Latent Diffusion Models [12.54316645614762]
LDM4TS is a novel framework that leverages the powerful image reconstruction capabilities of latent diffusion models for vision-enhanced time series forecasting.
We are the first to use complementary transformation techniques to convert time series into multi-view visual representations.
arXiv Detail & Related papers (2025-02-16T14:15:06Z) - Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
We propose a universal synthetic image detector Time Step Generating (TSG)
TSG does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms.
We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
arXiv Detail & Related papers (2024-11-17T09:39:50Z) - Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective [52.778766190479374]
Latent-based image generative models have achieved notable success in image generation tasks.
Despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation.
We propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling.
arXiv Detail & Related papers (2024-10-16T12:13:17Z) - Sequential Posterior Sampling with Diffusion Models [15.028061496012924]
We propose a novel approach that models the transition dynamics to improve the efficiency of sequential diffusion posterior sampling in conditional image synthesis.
We demonstrate the effectiveness of our approach on a real-world dataset of high frame rate cardiac ultrasound images.
Our method opens up new possibilities for real-time applications of diffusion models in imaging and other domains requiring real-time inference.
arXiv Detail & Related papers (2024-09-09T07:55:59Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
This paper proposes to exploit the ability of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the constrained posterior.
Specifically, this paper adopts a class of expressive TPMs termed Probabilistic Circuits (PCs)
We show that our approach can consistently improve the overall quality and semantic coherence of inpainted images with only 10% additional computational overhead.
arXiv Detail & Related papers (2023-11-28T21:14:02Z) - TcGAN: Semantic-Aware and Structure-Preserved GANs with Individual
Vision Transformer for Fast Arbitrary One-Shot Image Generation [11.207512995742999]
One-shot image generation (OSG) with generative adversarial networks that learn from the internal patches of a given image has attracted world wide attention.
We propose a novel structure-preserved method TcGAN with individual vision transformer to overcome the shortcomings of the existing one-shot image generation methods.
arXiv Detail & Related papers (2023-02-16T03:05:59Z) - Universal Generative Modeling in Dual-domain for Dynamic MR Imaging [22.915796840971396]
We propose a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) to reconstruct highly under-sampled measurements.
More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing.
arXiv Detail & Related papers (2022-12-15T03:04:48Z) - Auto-regressive Image Synthesis with Integrated Quantization [55.51231796778219]
This paper presents a versatile framework for conditional image generation.
It incorporates the inductive bias of CNNs and powerful sequence modeling of auto-regression.
Our method achieves superior diverse image generation performance as compared with the state-of-the-art.
arXiv Detail & Related papers (2022-07-21T22:19:17Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
We propose an Information-Distillation Generative Adrial Network (ID-GAN) for disentanglement learning and high-fidelity synthesis.
Our method learns disentangled representation using VAE-based models, and distills the learned representation with an additional nuisance variable to the separate GAN-based generator for high-fidelity synthesis.
Despite the simplicity, we show that the proposed method is highly effective, achieving comparable image generation quality to the state-of-the-art methods using the disentangled representation.
arXiv Detail & Related papers (2020-01-13T14:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.