Towards an automated workflow in materials science for combining multi-modal simulative and experimental information using data mining and large language models
- URL: http://arxiv.org/abs/2502.14904v1
- Date: Tue, 18 Feb 2025 16:24:46 GMT
- Title: Towards an automated workflow in materials science for combining multi-modal simulative and experimental information using data mining and large language models
- Authors: Balduin Katzer, Steffen Klinder, Katrin Schulz,
- Abstract summary: This manuscript showcases an automated workflow, which unravels the encoded information from scientific literature to a machine-readable database.<n>Ultimately, a Retrieval-Augmented Generation (RAG) based Large Language Model (LLM) enables a fast and efficient question answering chat bot.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To retrieve and compare scientific data of simulations and experiments in materials science, data needs to be easily accessible and machine readable to qualify and quantify various materials science phenomena. The recent progress in open science leverages the accessibility to data. However, a majority of information is encoded within scientific documents limiting the capability of finding suitable literature as well as material properties. This manuscript showcases an automated workflow, which unravels the encoded information from scientific literature to a machine readable data structure of texts, figures, tables, equations and meta-data, using natural language processing and language as well as vision transformer models to generate a machine-readable database. The machine-readable database can be enriched with local data, as e.g. unpublished or private material data, leading to knowledge synthesis. The study shows that such an automated workflow accelerates information retrieval, proximate context detection and material property extraction from multi-modal input data exemplarily shown for the research field of microstructural analyses of face-centered cubic single crystals. Ultimately, a Retrieval-Augmented Generation (RAG) based Large Language Model (LLM) enables a fast and efficient question answering chat bot.
Related papers
- Human-artificial intelligence teaming for scientific information extraction from data-driven additive manufacturing research using large language models [3.0061386772253784]
Data-driven research in Additive Manufacturing (AM) has gained significant success in recent years.
This has led to a plethora of scientific literature to emerge.
It requires substantial effort and time to extract scientific information from these works.
We propose a framework that enables collaboration between AM and AI experts to continuously extract scientific information from data-driven AM literature.
arXiv Detail & Related papers (2024-07-26T15:43:52Z) - From Text to Insight: Large Language Models for Materials Science Data Extraction [4.08853418443192]
The vast majority of materials science knowledge exists in unstructured natural language.<n>Structured data is crucial for innovative and systematic materials design.<n>The advent of large language models (LLMs) represents a significant shift.
arXiv Detail & Related papers (2024-07-23T22:23:47Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
We present a comprehensive dataset compiled from Nature Communications articles covering 72 scientific fields.<n>We evaluated 19 proprietary and open-source models on two benchmark tasks, figure captioning and multiple-choice, and conducted human expert annotation.<n>Fine-tuning Qwen2-VL-7B with our task-specific data achieved better performance than GPT-4o and even human experts in multiple-choice evaluations.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
We introduce an end-to-end AI agent framework capable of high-fidelity extraction from extensive chemical literature.
Our framework's efficacy is evaluated using accuracy, recall, and F1 score of reaction condition data.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - Text2Data: Low-Resource Data Generation with Textual Control [100.5970757736845]
Text2Data is a novel approach that utilizes unlabeled data to understand the underlying data distribution.
It undergoes finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting.
arXiv Detail & Related papers (2024-02-08T03:41:39Z) - Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research [139.69207791947738]
Dolma is a three-trillion-token English corpus built from a diverse mixture of web content, scientific papers, code, public-domain books, social media, and encyclopedic materials.
We document Dolma, including its design principles, details about its construction, and a summary of its contents.
We present analyses and experimental results on intermediate states of Dolma to share what we have learned about important data curation practices.
arXiv Detail & Related papers (2024-01-31T20:29:50Z) - Agent-based Learning of Materials Datasets from Scientific Literature [0.0]
We develop a chemist AI agent, powered by large language models (LLMs), to create structured datasets from natural language text.
Our chemist AI agent, Eunomia, can plan and execute actions by leveraging the existing knowledge from decades of scientific research articles.
arXiv Detail & Related papers (2023-12-18T20:29:58Z) - Large Language Models as Master Key: Unlocking the Secrets of Materials
Science with GPT [9.33544942080883]
This article presents a new natural language processing (NLP) task called structured information inference (SII) to address the complexities of information extraction at the device level in materials science.
We accomplished this task by tuning GPT-3 on an existing perovskite solar cell FAIR dataset with 91.8% F1-score and extended the dataset with data published since its release.
We also designed experiments to predict the electrical performance of solar cells and design materials or devices with targeted parameters using large language models (LLMs)
arXiv Detail & Related papers (2023-04-05T04:01:52Z) - Structured information extraction from complex scientific text with
fine-tuned large language models [55.96705756327738]
We present a simple sequence-to-sequence approach to joint named entity recognition and relation extraction.
The approach leverages a pre-trained large language model (LLM), GPT-3, that is fine-tuned on approximately 500 pairs of prompts.
This approach represents a simple, accessible, and highly-flexible route to obtaining large databases of structured knowledge extracted from unstructured text.
arXiv Detail & Related papers (2022-12-10T07:51:52Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Audacity of huge: overcoming challenges of data scarcity and data
quality for machine learning in computational materials discovery [1.0036312061637764]
Machine learning (ML)-accelerated discovery requires large amounts of high-fidelity data to reveal predictive structure-property relationships.
For many properties of interest in materials discovery, the challenging nature and high cost of data generation has resulted in a data landscape that is scarcely populated and of dubious quality.
In the absence of manual curation, increasingly sophisticated natural language processing and automated image analysis are making it possible to learn structure-property relationships from the literature.
arXiv Detail & Related papers (2021-11-02T21:43:58Z) - Synthetic Data: Opening the data floodgates to enable faster, more
directed development of machine learning methods [96.92041573661407]
Many ground-breaking advancements in machine learning can be attributed to the availability of a large volume of rich data.
Many large-scale datasets are highly sensitive, such as healthcare data, and are not widely available to the machine learning community.
Generating synthetic data with privacy guarantees provides one such solution.
arXiv Detail & Related papers (2020-12-08T17:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.