論文の概要: Online hand gesture recognition using Continual Graph Transformers
- arxiv url: http://arxiv.org/abs/2502.14939v1
- Date: Thu, 20 Feb 2025 17:27:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:10:55.505790
- Title: Online hand gesture recognition using Continual Graph Transformers
- Title(参考訳): 連続グラフ変換器を用いたオンライン手のジェスチャー認識
- Authors: Rim Slama, Wael Rabah, Hazem Wannous,
- Abstract要約: リアルタイムスケルトンシーケンスストリーミングのための新しいオンライン認識システムを提案する。
提案手法は最先端の精度を実現し, 偽陽性率を大幅に低減し, リアルタイムアプリケーションにとって魅力的なソリューションとなる。
提案システムは,人間とロボットのコラボレーションや補助技術など,さまざまな領域にシームレスに統合することができる。
- 参考スコア(独自算出の注目度): 1.3927943269211591
- License:
- Abstract: Online continuous action recognition has emerged as a critical research area due to its practical implications in real-world applications, such as human-computer interaction, healthcare, and robotics. Among various modalities, skeleton-based approaches have gained significant popularity, demonstrating their effectiveness in capturing 3D temporal data while ensuring robustness to environmental variations. However, most existing works focus on segment-based recognition, making them unsuitable for real-time, continuous recognition scenarios. In this paper, we propose a novel online recognition system designed for real-time skeleton sequence streaming. Our approach leverages a hybrid architecture combining Spatial Graph Convolutional Networks (S-GCN) for spatial feature extraction and a Transformer-based Graph Encoder (TGE) for capturing temporal dependencies across frames. Additionally, we introduce a continual learning mechanism to enhance model adaptability to evolving data distributions, ensuring robust recognition in dynamic environments. We evaluate our method on the SHREC'21 benchmark dataset, demonstrating its superior performance in online hand gesture recognition. Our approach not only achieves state-of-the-art accuracy but also significantly reduces false positive rates, making it a compelling solution for real-time applications. The proposed system can be seamlessly integrated into various domains, including human-robot collaboration and assistive technologies, where natural and intuitive interaction is crucial.
- Abstract(参考訳): オンラインの連続的な行動認識は、人間とコンピュータの相互作用、医療、ロボット工学といった現実の応用に実際に影響しているため、重要な研究領域として浮上している。
様々なモダリティの中で、骨格に基づくアプローチは、環境変動に対するロバスト性を確保しつつ、3次元の時間的データを取得する効果を実証し、大きな人気を得た。
しかし、既存のほとんどの研究はセグメントベースの認識に焦点を当てており、リアルタイムで連続的な認識シナリオには適さない。
本稿では,リアルタイムスケルトンシーケンスストリーミングのための新しいオンライン認識システムを提案する。
提案手法では,空間的特徴抽出に空間グラフ畳み込みネットワーク(S-GCN)と,フレーム間の時間的依存関係の取得にトランスフォーマーベースのグラフエンコーダ(TGE)を組み合わせたハイブリッドアーキテクチャを利用する。
さらに、進化するデータ分布に対するモデル適応性を高めるための連続学習機構を導入し、動的環境における堅牢な認識を保証する。
提案手法をSHREC'21ベンチマークデータセット上で評価し,オンライン手振り認識において優れた性能を示す。
我々の手法は最先端の精度を達成するだけでなく、偽陽性率を大幅に低減し、リアルタイムアプリケーションにとって魅力的な解決策となる。
提案システムは、自然と直感的な相互作用が不可欠である人間とロボットの協調や補助技術など、さまざまな領域にシームレスに統合することができる。
関連論文リスト
- Online Relational Inference for Evolving Multi-agent Interacting Systems [14.275434303742328]
オンライン推論(ORI)は、マルチエージェントインタラクションシステムの進化において、隠れた相互作用グラフを効率的に識別するように設計されている。
固定トレーニングセットに依存する従来のオフラインメソッドとは異なり、ORIはオンラインバックプロパゲーションを採用し、新しいデータポイント毎にモデルを更新する。
重要な革新は、AdaRelationと呼ばれる新しい適応学習技術によって最適化されたトレーニング可能なパラメータとして、隣接行列を使用することである。
論文 参考訳(メタデータ) (2024-11-03T05:43:55Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - Real-Time Hand Gesture Recognition: Integrating Skeleton-Based Data Fusion and Multi-Stream CNN [0.0]
ハンドジェスチャ認識(HGR)は、様々な現実世界のコンテキストにおいて、直感的な人間とコンピュータのインタラクションを可能にする。
既存のフレームワークは、実用的なHGRアプリケーションに必要なリアルタイム要件を満たすのに苦労することが多い。
本研究では,動的ハンドジェスチャの静的イメージタスクへの認識を簡略化する,動的HGRのための頑健な骨格ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-21T09:30:59Z) - Real-time Trajectory-based Social Group Detection [22.86110112028644]
本稿では,ソーシャルグループ検出のためのシンプルで効率的なフレームワークを提案する。
本稿では,行動軌跡がソーシャルグルーピングに与える影響を考察し,新しい,信頼性の高い,高速なデータ駆動手法を用いる。
一般的なJRDBActデータセットに対する実験では,2%から11%の相対的な改善により,顕著な性能向上が見られた。
論文 参考訳(メタデータ) (2023-04-12T08:01:43Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
ロボット制御ジェスチャー(RoCoG-v2)と呼ばれる新しいデータセットを導入する。
データセットは7つのジェスチャークラスの実ビデオと合成ビデオの両方で構成されている。
我々は,最先端の行動認識とドメイン適応アルゴリズムを用いて結果を示す。
論文 参考訳(メタデータ) (2023-03-17T23:23:55Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
骨格に基づく行動認識のための適応的局所成分認識グラフ畳み込みネットワークを提案する。
我々の手法はグローバルな埋め込みよりも強力な表現を提供し、我々のモデルが最先端に到達するのに役立ちます。
論文 参考訳(メタデータ) (2022-09-21T02:33:07Z) - A Spatio-Temporal Multilayer Perceptron for Gesture Recognition [70.34489104710366]
自律走行車におけるジェスチャー認識のための多層状態重み付きパーセプトロンを提案する。
提案手法の有望な性能を示すため,TCGおよびDrive&Actデータセットの評価を行った。
私たちは、そのリアルタイム能力と安定した実行を示すために、モデルを自動運転車にデプロイします。
論文 参考訳(メタデータ) (2022-04-25T08:42:47Z) - Towards Domain-Independent and Real-Time Gesture Recognition Using
mmWave Signal [11.76969975145963]
DI-Gesture はドメインに依存しないリアルタイムの mmWave ジェスチャー認識システムである。
リアルタイムシナリオでは、DI-Gesutreの精度は平均推定時間2.87msで97%以上に達する。
論文 参考訳(メタデータ) (2021-11-11T13:28:28Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z) - Attention-Oriented Action Recognition for Real-Time Human-Robot
Interaction [11.285529781751984]
本稿では,リアルタイムインタラクションの必要性に応えるために,アテンション指向のマルチレベルネットワークフレームワークを提案する。
具体的には、プレアテンションネットワークを使用して、低解像度でシーン内のインタラクションに大まかにフォーカスする。
他のコンパクトCNNは、抽出されたスケルトンシーケンスをアクション認識用の入力として受信する。
論文 参考訳(メタデータ) (2020-07-02T12:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。