論文の概要: Reward-Guided Iterative Refinement in Diffusion Models at Test-Time with Applications to Protein and DNA Design
- arxiv url: http://arxiv.org/abs/2502.14944v1
- Date: Thu, 20 Feb 2025 17:48:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:11:46.951062
- Title: Reward-Guided Iterative Refinement in Diffusion Models at Test-Time with Applications to Protein and DNA Design
- Title(参考訳): 逆ガイド法による拡散モデルの試験時間における反復的再微細化とタンパク質・DNA設計への応用
- Authors: Masatoshi Uehara, Xingyu Su, Yulai Zhao, Xiner Li, Aviv Regev, Shuiwang Ji, Sergey Levine, Tommaso Biancalani,
- Abstract要約: 進化的アルゴリズムにインスパイアされた拡散モデルを用いた推論時間報酬最適化のための新しいフレームワークを提案する。
当社のアプローチでは,各イテレーションにおける2つのステップ – ノイズ発生と報酬誘導という,反復的な改善プロセスを採用しています。
- 参考スコア(独自算出の注目度): 87.58981407469977
- License:
- Abstract: To fully leverage the capabilities of diffusion models, we are often interested in optimizing downstream reward functions during inference. While numerous algorithms for reward-guided generation have been recently proposed due to their significance, current approaches predominantly focus on single-shot generation, transitioning from fully noised to denoised states. We propose a novel framework for inference-time reward optimization with diffusion models inspired by evolutionary algorithms. Our approach employs an iterative refinement process consisting of two steps in each iteration: noising and reward-guided denoising. This sequential refinement allows for the gradual correction of errors introduced during reward optimization. Besides, we provide a theoretical guarantee for our framework. Finally, we demonstrate its superior empirical performance in protein and cell-type-specific regulatory DNA design. The code is available at \href{https://github.com/masa-ue/ProDifEvo-Refinement}{https://github.com/masa-ue/ProDifEvo-Refinement}.
- Abstract(参考訳): 拡散モデルの能力をフル活用するために、推論中に下流の報酬関数を最適化することに関心があることが多い。
報酬誘導生成のための多くのアルゴリズムは、その重要性から最近提案されているが、現在のアプローチは、主に単一ショット生成に焦点を合わせ、完全ノイズ状態から復号状態へ移行している。
進化的アルゴリズムにインスパイアされた拡散モデルを用いた推論時間報酬最適化のための新しいフレームワークを提案する。
当社のアプローチでは,各イテレーションにおける2つのステップ – ノイズ発生と報酬誘導という,反復的な改善プロセスを採用しています。
このシーケンシャルな改善により、報酬最適化時に導入されたエラーの段階的な修正が可能になる。
さらに、私たちのフレームワークに理論的保証を提供します。
最後に,タンパク質および細胞型特異的なDNA設計において,その優れた経験的性能を示す。
コードは \href{https://github.com/masa-ue/ProDifEvo-Refinement}{https://github.com/masa-ue/ProDifEvo-Refinement} で公開されている。
関連論文リスト
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
拡散モデルは、画像、分子、DNA、RNA、タンパク質配列の自然なデザイン空間を捉えるのに優れている。
これらの設計空間の自然性を保ちながら、下流の報酬関数を最適化することを目指している。
提案アルゴリズムは,中間雑音状態が将来高い報酬をもたらすことの先駆けとして,ソフトバリュー関数を統合する。
論文 参考訳(メタデータ) (2024-08-15T16:47:59Z) - Inference-Time Alignment of Diffusion Models with Direct Noise Optimization [45.77751895345154]
拡散モデルのサンプリング過程において, 直接雑音最適化 (DNO) と呼ばれる新しいアライメント手法を提案する。
設計上、DNOは推論時に動作し、チューニングが不要で、即席で、アライメントは世代毎にオンラインに行われる。
我々は,いくつかの重要な報酬関数について広範な実験を行い,提案したDNOアプローチが,適切な時間予算で,最先端の報酬スコアを達成できることを実証した。
論文 参考訳(メタデータ) (2024-05-29T08:39:39Z) - Gradient Guidance for Diffusion Models: An Optimization Perspective [45.6080199096424]
本稿では,ユーザ特定目的の最適化に向けて,事前学習した拡散モデルを適用するための勾配ガイダンスの形式について検討する。
我々は,その最適化理論とアルゴリズム設計を体系的に研究するために,誘導拡散の数学的枠組みを確立する。
論文 参考訳(メタデータ) (2024-04-23T04:51:02Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
タンパク質設計における一般的なアプローチは、生成モデルと条件付きサンプリングのための識別モデルを組み合わせることである。
離散拡散モデルのためのガイダンス手法であるdiffusioN Optimized Smpling (NOS)を提案する。
NOSは、構造に基づく手法の重要な制限を回避し、シーケンス空間で直接設計を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T16:31:24Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
本研究では,ジェネレーティブ・アドバイサル・ネットワークや正規化フローなどの生成モデルのための新しいトレーニング手法を開発した。
指定された精度-リコールトレードオフを達成することは、textitPR-divergencesと呼ぶ家族からのユニークな$f$-divergenceを最小化することを意味する。
当社のアプローチは,ImageNetなどのデータセットでテストした場合の精度とリコールの両面で,BigGANのような既存の最先端モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-05-30T10:07:17Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation [25.37244686572865]
本稿では、逐次レコメンデーションのためのAdversarial and Contrastive Variational Autoencoder (ACVAE) と呼ばれる新しい手法を提案する。
まず,本モデルが高品質な潜在変数を生成することを可能にするadversarial variational bayesフレームワークの下で,シーケンス生成のためのadversarial trainingを導入する。
さらに、シーケンスをエンコードする場合、シーケンス内のグローバルおよびローカルの関係をキャプチャするために、繰り返しおよび畳み込み構造を適用します。
論文 参考訳(メタデータ) (2021-03-19T09:01:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。