Contextualizing Search Queries In-Context Learning for Conversational Rewriting with LLMs
- URL: http://arxiv.org/abs/2502.15009v1
- Date: Thu, 20 Feb 2025 20:02:42 GMT
- Title: Contextualizing Search Queries In-Context Learning for Conversational Rewriting with LLMs
- Authors: Raymond Wilson, Chase Carter, Cole Graham,
- Abstract summary: This paper introduces Prompt-Guided In-Context Learning, a novel approach for few-shot conversational query rewriting.<n>Our method employs carefully designed prompts, incorporating task descriptions, input/output format specifications, and a small set of illustrative examples.<n>Experiments on benchmark datasets, TREC and Taskmaster-1, demonstrate that our approach significantly outperforms strong baselines.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational query rewriting is crucial for effective conversational search, yet traditional supervised methods require substantial labeled data, which is scarce in low-resource settings. This paper introduces Prompt-Guided In-Context Learning, a novel approach that leverages the in-context learning capabilities of Large Language Models (LLMs) for few-shot conversational query rewriting. Our method employs carefully designed prompts, incorporating task descriptions, input/output format specifications, and a small set of illustrative examples, to guide pre-trained LLMs to generate context-independent queries without explicit fine-tuning. Extensive experiments on benchmark datasets, TREC and Taskmaster-1, demonstrate that our approach significantly outperforms strong baselines, including supervised models and contrastive co-training methods, across various evaluation metrics such as BLEU, ROUGE-L, Success Rate, and MRR. Ablation studies confirm the importance of in-context examples, and human evaluations further validate the superior fluency, relevance, and context utilization of our generated rewrites. The results highlight the potential of prompt-guided in-context learning as an efficient and effective paradigm for low-resource conversational query rewriting, reducing the reliance on extensive labeled data and complex training procedures.
Related papers
- Learning Task Representations from In-Context Learning [73.72066284711462]
Large language models (LLMs) have demonstrated remarkable proficiency in in-context learning.<n>We introduce an automated formulation for encoding task information in ICL prompts as a function of attention heads.<n>We show that our method's effectiveness stems from aligning the distribution of the last hidden state with that of an optimally performing in-context-learned model.
arXiv Detail & Related papers (2025-02-08T00:16:44Z) - On the Loss of Context-awareness in General Instruction Fine-tuning [101.03941308894191]
We investigate the loss of context awareness after supervised fine-tuning.<n>We find that the performance decline is associated with a bias toward different roles learned during conversational instruction fine-tuning.<n>We propose a metric to identify context-dependent examples from general instruction fine-tuning datasets.
arXiv Detail & Related papers (2024-11-05T00:16:01Z) - DiSCo Meets LLMs: A Unified Approach for Sparse Retrieval and Contextual Distillation in Conversational Search [19.694957365385896]
Conversational Search (CS) is the task of retrieving relevant documents from a corpus within a conversational context.
Current methods address this by distilling embeddings from human-rewritten queries to learn the context modeling task.
We propose a new distillation method, as a relaxation of the previous objective, unifying retrieval and context modeling.
arXiv Detail & Related papers (2024-10-18T17:03:17Z) - Unleashing the Power of Large Language Models in Zero-shot Relation Extraction via Self-Prompting [21.04933334040135]
We introduce the Self-Prompting framework, a novel method designed to fully harness the embedded RE knowledge within Large Language Models.<n>Our framework employs a three-stage diversity approach to prompt LLMs, generating multiple synthetic samples that encapsulate specific relations from scratch.<n> Experimental evaluations on benchmark datasets show our approach outperforms existing LLM-based zero-shot RE methods.
arXiv Detail & Related papers (2024-10-02T01:12:54Z) - Benchmarking Large Language Models for Conversational Question Answering in Multi-instructional Documents [61.41316121093604]
We present InsCoQA, a novel benchmark for evaluating large language models (LLMs) in the context of conversational question answering (CQA)
Sourced from extensive, encyclopedia-style instructional content, InsCoQA assesses models on their ability to retrieve, interpret, and accurately summarize procedural guidance from multiple documents.
We also propose InsEval, an LLM-assisted evaluator that measures the integrity and accuracy of generated responses and procedural instructions.
arXiv Detail & Related papers (2024-10-01T09:10:00Z) - Enhancing Text Annotation through Rationale-Driven Collaborative Few-Shot Prompting [12.559532596473225]
This study explores the potential of large language models (LLMs) as automated data annotators.
By employing rationale-driven collaborative few-shot prompting techniques, we aim to improve the performance of LLMs in text annotation.
arXiv Detail & Related papers (2024-09-15T05:32:21Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
Large language models (LLMs) bring unprecedented flexibility in defining and executing complex, creative natural language generation (NLG) tasks.
We propose a three-component research framework that consists of systematic input manipulation, reference data, and output measurement.
We use this framework to explore citation text generation -- a popular scholarly NLP task that lacks consensus on the task definition and evaluation metric.
arXiv Detail & Related papers (2024-07-04T16:41:08Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICL is a novel few-shot technique that leverages both correct and incorrect sample constructions to create in-context learning demonstrations.
Our experiments on various datasets indicate that c-ICL outperforms previous few-shot in-context learning methods.
arXiv Detail & Related papers (2024-02-17T11:28:08Z) - Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
We introduce contrastive learning and multi-task learning to jointly model the problem.
Our proposed model achieves state-of-the-art performance on several public datasets.
arXiv Detail & Related papers (2022-03-22T10:13:27Z) - Conversational Query Rewriting with Self-supervised Learning [36.392717968127016]
Conversational Query Rewriting (CQR) aims to simplify the multi-turn dialogue modeling into a single-turn problem by explicitly rewriting the conversational query into a self-contained utterance.
Existing approaches rely on massive supervised training data, which is labor-intensive to annotate.
We propose to construct a large-scale CQR dataset automatically via self-supervised learning, which does not need human annotation.
arXiv Detail & Related papers (2021-02-09T08:57:53Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.