論文の概要: Obliviate: Efficient Unmemorization for Protecting Intellectual Property in Large Language Models
- arxiv url: http://arxiv.org/abs/2502.15010v1
- Date: Thu, 20 Feb 2025 20:02:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:11:51.995841
- Title: Obliviate: Efficient Unmemorization for Protecting Intellectual Property in Large Language Models
- Title(参考訳): Obliviate: 大規模言語モデルにおける知的財産保護のための効率的なアンメモリ化
- Authors: Mark Russinovich, Ahmed Salem,
- Abstract要約: AI企業とコンテンツクリエーター間の最近の著作権協定は、著作権付きコンテンツを再現する言語モデルの能力を正確に制御する必要性を強調している。
Obliviateは,意味理解を保ちながら,特定のテキストの音声再生を選択的に防止する手法である。
- 参考スコア(独自算出の注目度): 2.7174461714624805
- License:
- Abstract: Recent copyright agreements between AI companies and content creators have highlighted the need for precise control over language models' ability to reproduce copyrighted content. While existing approaches rely on either complete concept removal through unlearning or simple output filtering, we propose Obliviate, a novel post-training technique that selectively prevents verbatim reproduction of specific text while preserving semantic understanding. Obliviate operates by selecting tokens within memorized sequences and modifying the model's probability distribution to prevent exact reproduction while maintaining contextual understanding. We evaluate Obliviate on multiple large language models (LLaMA-3.1 8B, LLaMA-3.1-instruct 8B, Qwen-2.5-7B, and Yi-1.5 6B) across both synthetic memorization tasks and organic copyright content. Our results demonstrate that Obliviate achieves orders of magnitude reduction, e.g., 100x, in verbatim memorization while maintaining model performance within 1% of baseline on standard benchmarks (HellaSwag, MMLU, TruthfulQA, and Winogrande). This makes Obliviate particularly suitable for practical deployment scenarios where companies need to efficiently address copyright concerns in pretrained models without compromising their general capabilities.
- Abstract(参考訳): AI企業とコンテンツクリエーター間の最近の著作権協定は、著作権付きコンテンツを再現する言語モデルの能力を正確に制御する必要性を強調している。
既存の手法では、未学習や単純な出力フィルタリングによる完全な概念除去に頼っているが、意味的理解を維持しつつ、特定のテキストの冗長な再生を選択的に防止する新しいポストトレーニング手法であるObliviateを提案する。
Obliviateは、記憶されたシーケンス内でトークンを選択し、モデルの確率分布を変更して、コンテキスト理解を維持しながら正確な再現を防止する。
Obliviate on multiple large language models (LLaMA-3.1 8B, LLaMA-3.1-instruct 8B, Qwen-2.5-7B, Yi-1.5 6B)。
その結果,Obliviateは標準ベンチマーク(HellaSwag, MMLU, TruthfulQA, Winogrande)のベースラインの1%以内のモデル性能を維持しつつ,動詞の暗記において,大域的な縮小(例えば100倍)を実現していることがわかった。
これにより、Obliviateは、企業が一般的な能力を損なうことなく、事前訓練されたモデルの著作権問題に効率的に対処する必要がある、実践的なデプロイメントシナリオに特に適しています。
関連論文リスト
- Accelerating LLM Inference with Lossless Speculative Decoding Algorithms for Heterogeneous Vocabularies [10.971976066073442]
投機的復号法(SD法)は、単一の目標フォワードパスを使用して複数のトークンを生成することにより、実質的な効率向上をもたらす。
既存のSDアプローチでは、ドラフトラとターゲットモデルは同じ語彙を共有する必要があるため、ドラフトラのプールが制限される。
この共有語彙制約を除去する3つの新しいSD手法を提案する。
論文 参考訳(メタデータ) (2025-01-31T19:13:58Z) - Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection [49.15148871877941]
大規模言語モデル(LLM)の検出に理論的に魅力的なアプローチを提供する次点分布出力
本稿では,LLMの最後の隠蔽状態を用いて,列長の次トーケン分布のメトリクスに基づく一連の特徴量の重み付けを行うパープレキシティ注意重み付けネットワーク(PAWN)を提案する。
PAWNは、トレーニング可能なパラメータのごく一部を持つ最強のベースラインよりも、競争力があり、より優れた分散性能を示している。
論文 参考訳(メタデータ) (2025-01-07T17:00:49Z) - Investigating the Feasibility of Mitigating Potential Copyright Infringement via Large Language Model Unlearning [0.0]
LLM(Pre-trained Large Language Models)は、優れた能力を示すと同時に、著作権のある資料の学習と生成によるリスクも生んでいる。
本研究では,LLMから複数の時間ステップで著作権付きコンテンツを解放する新しいフレームワークであるSSU(Stable Sequential Unlearning)を提案する。
SSUは時に、未学習の有効性と汎用言語能力の効果的なトレードオフを達成し、既存のベースラインを上回ります。
論文 参考訳(メタデータ) (2024-12-16T20:01:06Z) - A Bayesian Approach to Harnessing the Power of LLMs in Authorship Attribution [57.309390098903]
著者の属性は、文書の起源または著者を特定することを目的としている。
大きな言語モデル(LLM)とその深い推論能力と長距離テキストアソシエーションを維持する能力は、有望な代替手段を提供する。
IMDbおよびブログデータセットを用いた結果, 著者10名を対象に, 著者1名に対して, 85%の精度が得られた。
論文 参考訳(メタデータ) (2024-10-29T04:14:23Z) - Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles [23.134664392314264]
トークン化は言語モデル(LM)における多くの未理解の欠点と関連している
本研究は, トークン化がモデルとバイトレベルのモデルを比較し比較することによって, モデル性能に与える影響について検討する。
我々は、さらなるトレーニングや最適化を必要とせず、トークン化バイアスを除去する次世代サンプリングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-11T23:30:42Z) - Avoiding Copyright Infringement via Large Language Model Unlearning [24.050754626661124]
本稿では,複数段階にわたる大規模言語モデルから著作権付きコンテンツを解放するための新しいフレームワークを提案する。
ランダムなラベリング損失を導入し、モデルの汎用的知識を確実に維持することにより、未学習の有効性を向上させる。
実験結果から,SSUは未学習の有効性と汎用言語能力とのトレードオフを効果的に達成できることが示された。
論文 参考訳(メタデータ) (2024-06-16T14:12:37Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
大規模言語モデル(LLM)は、自然言語処理タスクの幅広い領域にわたる変換的進歩を触媒している。
我々は,自己認識型誤り識別と訂正機能を備えたLLMを実現するために,textbfCLEARと呼ばれる革新的なテキストメタ認知手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T19:18:53Z) - JAMDEC: Unsupervised Authorship Obfuscation using Constrained Decoding
over Small Language Models [53.83273575102087]
著者の難読化に対する教師なし推論時間アプローチを提案する。
本稿では,著者難読化のためのユーザ制御推論時間アルゴリズムであるJAMDECを紹介する。
提案手法は,GPT2-XL などの小型言語モデルに基づいて,オリジナルコンテンツをプロプライエタリな LLM の API に公開するのを防ぐ。
論文 参考訳(メタデータ) (2024-02-13T19:54:29Z) - Lexically-constrained Text Generation through Commonsense Knowledge
Extraction and Injection [62.071938098215085]
我々は、ある入力概念のセットに対して妥当な文を生成することを目的としているcommongenベンチマークに焦点を当てる。
生成したテキストの意味的正しさを高めるための戦略を提案する。
論文 参考訳(メタデータ) (2020-12-19T23:23:40Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
変分オートエンコーダ(VAE)は、エンドツーエンドの表現学習において必須のツールである。
VAEは強い自己回帰デコーダで潜伏変数を無視する傾向がある。
よりコンパクトな潜在空間において暗黙的な潜在特徴マッチングを強制する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2020-04-22T14:41:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。