論文の概要: Approximating Latent Manifolds in Neural Networks via Vanishing Ideals
- arxiv url: http://arxiv.org/abs/2502.15051v1
- Date: Thu, 20 Feb 2025 21:23:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 19:42:20.562156
- Title: Approximating Latent Manifolds in Neural Networks via Vanishing Ideals
- Title(参考訳): ニューラルネットワークにおける遅延多様体の消滅による近似
- Authors: Nico Pelleriti, Max Zimmer, Elias Wirth, Sebastian Pokutta,
- Abstract要約: 我々は, 無限イデアルがディープネットワークの潜在多様体をいかに特徴付けるかを示すことによって, 多様体学習と計算代数学の関連性を確立する。
本稿では,中間層で事前学習されたネットワークを切断し,消滅するイデアルのジェネレータを介して各クラス多様体を近似するニューラルアーキテクチャを提案する。
得られたモデルは、トレーニング済みのベースラインよりも著しく少ないが、同等の精度を維持し、高いスループットを実現し、パラメータが少ない。
- 参考スコア(独自算出の注目度): 20.464009622419766
- License:
- Abstract: Deep neural networks have reshaped modern machine learning by learning powerful latent representations that often align with the manifold hypothesis: high-dimensional data lie on lower-dimensional manifolds. In this paper, we establish a connection between manifold learning and computational algebra by demonstrating how vanishing ideals can characterize the latent manifolds of deep networks. To that end, we propose a new neural architecture that (i) truncates a pretrained network at an intermediate layer, (ii) approximates each class manifold via polynomial generators of the vanishing ideal, and (iii) transforms the resulting latent space into linearly separable features through a single polynomial layer. The resulting models have significantly fewer layers than their pretrained baselines, while maintaining comparable accuracy, achieving higher throughput, and utilizing fewer parameters. Furthermore, drawing on spectral complexity analysis, we derive sharper theoretical guarantees for generalization, showing that our approach can in principle offer tighter bounds than standard deep networks. Numerical experiments confirm the effectiveness and efficiency of the proposed approach.
- Abstract(参考訳): ディープニューラルネットワークは、しばしば多様体仮説と一致する強力な潜在表現を学習することで、現代の機械学習を再構築した。
本稿では, ニューラルネットワークの潜在多様体をいかに特徴付けるかを示すことによって, 多様体学習と計算代数学の関連性を確立する。
そこで我々は,新しいニューラルアーキテクチャを提案する。
i)中間層で事前訓練されたネットワークを切断する。
(ii) 消滅イデアルの多項式生成器を介して各類多様体を近似し、
(iii) 結果として生じる潜在空間を1つの多項式層を通して線形分離可能な特徴に変換する。
得られたモデルは、トレーニング済みのベースラインよりも著しく少ないが、同等の精度を維持し、高いスループットを実現し、パラメータが少ない。
さらに、スペクトル複雑性解析に基づいて、一般化のためのよりシャープな理論的保証を導出し、我々のアプローチが原則として標準のディープネットワークよりも厳密な境界を提供できることを示す。
数値実験により,提案手法の有効性と有効性が確認された。
関連論文リスト
- Exploring the Manifold of Neural Networks Using Diffusion Geometry [7.038126249994092]
ニューラルネットワークの隠蔽層表現間の距離を導入することにより,データポイントがニューラルネットワークである多様体を学習する。
これらの距離は非線形次元減少アルゴリズムPHATEに供給され、ニューラルネットワークの多様体を生成する。
解析の結果,高い性能のネットワークが一貫した埋め込みパターンを表示できることがわかった。
論文 参考訳(メタデータ) (2024-11-19T16:34:45Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Understanding Deep Representation Learning via Layerwise Feature
Compression and Discrimination [33.273226655730326]
深層線形ネットワークの各層は、幾何速度でクラス内特徴を徐々に圧縮し、線形速度でクラス間特徴を識別することを示す。
これは、ディープ線形ネットワークの階層的表現における特徴進化の最初の定量的評価である。
論文 参考訳(メタデータ) (2023-11-06T09:00:38Z) - A Unified Algebraic Perspective on Lipschitz Neural Networks [88.14073994459586]
本稿では,様々なタイプの1-Lipschitzニューラルネットワークを統一する新しい視点を提案する。
そこで本研究では,SDP(Common semidefinite Programming)条件の解析解を求めることによって,既存の多くの手法を導出し,一般化することができることを示す。
SDPベースのLipschitz Layers (SLL) と呼ばれる我々のアプローチは、非自明で効率的な凸ポテンシャル層の一般化を設計できる。
論文 参考訳(メタデータ) (2023-03-06T14:31:09Z) - An Information-Theoretic Framework for Supervised Learning [22.280001450122175]
後悔とサンプルの複雑さという独自の概念を持つ新しい情報理論フレームワークを提案する。
本稿では、ReLUアクティベーションユニットを用いたディープニューラルネットワークによって生成されたデータから学習する際のサンプルの複雑さについて検討する。
我々は、ランダムな単層ニューラルネットワークの実験的な解析により、理論結果を裏付けることで結論付ける。
論文 参考訳(メタデータ) (2022-03-01T05:58:28Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - ReduNet: A White-box Deep Network from the Principle of Maximizing Rate
Reduction [32.489371527159236]
この研究は、データ圧縮と識別表現の原理から、現代の深層(畳み込み)ネットワークを解釈することを目的とした、妥当な理論フレームワークの提供を試みる。
高次元マルチクラスデータに対して、最適な線形判別表現は、データセット全体と全てのサブセットの平均との符号化速度差を最大化することを示す。
速度減少目標を最適化するための基本的反復的勾配上昇スキームは,現代のディープネットワークの共通特性を共有する多層ディープネットワークであるReduNetに自然に導かれることを示す。
論文 参考訳(メタデータ) (2021-05-21T16:29:57Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - Deep Networks from the Principle of Rate Reduction [32.87280757001462]
この研究は、レート還元と(シフト)不変分類の原理から、現代のディープ(畳み込み)ネットワークを解釈しようとする。
学習した特徴量の減少率を最適化するための基本的反復的漸進勾配法が,多層深層ネットワーク,すなわち1層1回を自然に導くことを示す。
この「ホワイトボックス」ネットワークの全てのコンポーネントは正確な最適化、統計学、幾何学的解釈を持っている。
論文 参考訳(メタデータ) (2020-10-27T06:01:43Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
本稿では、DS2CF-Netと呼ばれる、拡張された事前制約付きDual-Constrained Deep Semi-Supervised Coupled Factorization Networkを提案する。
隠れた深い特徴を抽出するために、DS2CF-Netは、深い構造と幾何学的な構造に制約のあるニューラルネットワークとしてモデル化される。
我々のネットワークは、表現学習とクラスタリングのための最先端の性能を得ることができる。
論文 参考訳(メタデータ) (2020-09-08T13:10:21Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。