論文の概要: Optimizing Product Provenance Verification using Data Valuation Methods
- arxiv url: http://arxiv.org/abs/2502.15177v1
- Date: Fri, 21 Feb 2025 03:16:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:11:29.393630
- Title: Optimizing Product Provenance Verification using Data Valuation Methods
- Title(参考訳): データバリデーション手法による製品品質検証の最適化
- Authors: Raquib Bin Yousuf, Hoang Anh Just, Shengzhe Xu, Brian Mayer, Victor Deklerck, Jakub Truszkowski, John C. Simeone, Jade Saunders, Chang-Tien Lu, Ruoxi Jia, Naren Ramakrishnan,
- Abstract要約: 安定同位体比分析(SIRA)に適用された機械学習モデルのトレーニングデータの選択と活用を促進するために設計された新しいデータ評価フレームワークを提案する。
我々は,その方法論を広範な実験で検証し,証明の検証を著しく強化し,不正取引を緩和し,グローバルサプライチェーンの規制執行を強化する可能性を実証した。
- 参考スコア(独自算出の注目度): 24.59951827145763
- License:
- Abstract: Determining and verifying product provenance remains a critical challenge in global supply chains, particularly as geopolitical conflicts and shifting borders create new incentives for misrepresentation of commodities, such as hiding the origin of illegally harvested timber or stolen agricultural products. Stable Isotope Ratio Analysis (SIRA), combined with Gaussian process regression-based isoscapes, has emerged as a powerful tool for geographic origin verification. However, the effectiveness of these models is often constrained by data scarcity and suboptimal dataset selection. In this work, we introduce a novel data valuation framework designed to enhance the selection and utilization of training data for machine learning models applied in SIRA. By prioritizing high-informative samples, our approach improves model robustness and predictive accuracy across diverse datasets and geographies. We validate our methodology with extensive experiments, demonstrating its potential to significantly enhance provenance verification, mitigate fraudulent trade practices, and strengthen regulatory enforcement of global supply chains.
- Abstract(参考訳): 世界のサプライチェーンでは、特に地政学的な紛争や国境のずれが、違法に収穫された木材や盗難された農業製品の起源を隠蔽するなど、商品の誤った表現のための新たなインセンティブを生み出しているため、製品の出所の決定と検証は依然として重要な課題である。
安定同位体比分析(SIRA)とガウス過程の回帰に基づくアイソスケープが組み合わさって、地理的起源検証の強力なツールとして登場した。
しかし、これらのモデルの有効性は、データ不足と最適なデータセット選択によって制約されることが多い。
本研究では,SIRAに適用された機械学習モデルの学習データの選択と活用を促進するために,新しいデータアセスメントフレームワークを提案する。
提案手法は,高インフォーマティブなサンプルの優先順位付けにより,多様なデータセットや地理のモデルロバスト性と予測精度を向上させる。
我々は,その方法論を広範な実験で検証し,証明の検証を著しく強化し,不正取引を緩和し,グローバルサプライチェーンの規制執行を強化する可能性を実証した。
関連論文リスト
- Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
最初に、Fair Forgery Detection(FairFD)データセットと呼ばれる専用のデータセットをコントリビュートし、SOTA(Public State-of-the-art)メソッドの人種的偏見を証明する。
我々は、偽りの結果を避けることができる平均的メトリクスと実用正規化メトリクスを含む新しいメトリクスを設計する。
また,有効で堅牢な後処理技術であるBias Pruning with Fair Activations (BPFA)も提案する。
論文 参考訳(メタデータ) (2024-07-19T14:53:18Z) - Outlier Gradient Analysis: Efficiently Identifying Detrimental Training Samples for Deep Learning Models [36.05242956018461]
本稿では,影響関数と外乱勾配検出による有害トレーニングサンプルの同定とを橋渡しする。
まず, 合成データセットにおける外乱勾配解析手法の仮説を検証した。
次に、視覚モデルにおける誤ラベルサンプルの検出と、自然言語処理トランスフォーマーモデルの性能向上のためのデータサンプル選択の有効性を示す。
論文 参考訳(メタデータ) (2024-05-06T21:34:46Z) - FIMBA: Evaluating the Robustness of AI in Genomics via Feature
Importance Adversarial Attacks [0.0]
本稿では、認識された公開ゲノムデータセット上の下流タスクを利用するAIモデルの脆弱性を実証する。
我々は、実際のデータを模倣し、モデルの意思決定を混乱させながら、入力変換に焦点を当てた攻撃を展開することによって、モデルの堅牢性を損なう。
実験の結果, 精度が低下し, 偽陽性や偽陰性が増加し, モデル性能が低下していることが明らかとなった。
論文 参考訳(メタデータ) (2024-01-19T12:04:31Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
本稿では,制限付きラベル付きデータを用いたストリーミング環境の最適戦略を提案し,教師なし回帰のための適応手法を提案する。
提案手法は,初期ラベルのスパースセットを活用し,革新的なドリフト検出機構を導入する。
適応性を高めるために,Adaptive WINdowingアルゴリズムとRoot Mean Square Error (RMSE)に基づく誤り一般化アルゴリズムを統合する。
論文 参考訳(メタデータ) (2023-12-12T19:23:54Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
ワンショット・フェデレーション・ラーニング (OSFL) は, 通信コストの低さから近年注目されている。
本稿では,OSFLに拡散モデルがもたらす新たな機会を探求し,FedCADOを提案する。
FedCADOはクライアントのディストリビューションに準拠したデータを生成し、その後、サーバ上で集約されたモデルをトレーニングします。
論文 参考訳(メタデータ) (2023-11-15T11:11:25Z) - TRIAGE: Characterizing and auditing training data for improved
regression [80.11415390605215]
TRIAGEは回帰タスクに適した新しいデータキャラクタリゼーションフレームワークで、広範囲の回帰器と互換性がある。
TRIAGEは、共形予測分布を利用して、モデルに依存しないスコアリング方法、TRIAGEスコアを提供する。
TRIAGEの特徴は一貫性があり、複数の回帰設定においてデータの彫刻/フィルタリングによるパフォーマンス向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-10-29T10:31:59Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。