論文の概要: LUMINA-Net: Low-light Upgrade through Multi-stage Illumination and Noise Adaptation Network for Image Enhancement
- arxiv url: http://arxiv.org/abs/2502.15186v1
- Date: Fri, 21 Feb 2025 03:37:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:10:18.766318
- Title: LUMINA-Net: Low-light Upgrade through Multi-stage Illumination and Noise Adaptation Network for Image Enhancement
- Title(参考訳): LUMINA-Net:画像強調のための多段照明・雑音適応ネットワークによる低照度アップグレード
- Authors: Namrah Siddiqua, Kim Suneung,
- Abstract要約: 低照度画像強調(LLIE)は、低照度条件下で撮影された画像の視覚的忠実度を高めることを目的としたコンピュータビジョンにおける重要な課題である。
LUMINA-Netは,多段照明モジュールと反射率モジュールを統合した高度なディープラーニングフレームワークである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Low-light image enhancement (LLIE) is a crucial task in computer vision aimed to enhance the visual fidelity of images captured under low-illumination conditions. Conventional methods frequently struggle to mitigate pervasive shortcomings such as noise, over-exposure, and color distortion thereby precipitating a pronounced degradation in image quality. To address these challenges, we propose LUMINA-Net an advanced deep learning framework designed specifically by integrating multi-stage illumination and reflectance modules. First, the illumination module intelligently adjusts brightness and contrast levels while meticulously preserving intricate textural details. Second, the reflectance module incorporates a noise reduction mechanism that leverages spatial attention and channel-wise feature refinement to mitigate noise contamination. Through a comprehensive suite of experiments conducted on LOL and SICE datasets using PSNR, SSIM and LPIPS metrics, surpassing state-of-the-art methodologies and showcasing its efficacy in low-light image enhancement.
- Abstract(参考訳): 低照度画像強調(LLIE)は、低照度条件下で撮影された画像の視覚的忠実度を高めることを目的としたコンピュータビジョンにおける重要な課題である。
従来の方法では、ノイズ、過剰露光、色歪みなどの広汎な欠点を軽減し、画像品質の顕著な劣化を招きかねない。
これらの課題に対処するために,多段照明と反射率モジュールを統合した高度なディープラーニングフレームワークLUMINA-Netを提案する。
まず、照明モジュールは、複雑なテクスチャの詳細を注意深く保存しながら、明るさとコントラストレベルをインテリジェントに調整する。
第2に、リフレクタンスモジュールは、空間的注意とチャネルワイド特徴改善を利用してノイズ汚染を緩和するノイズ低減機構を組み込んでいる。
PSNR, SSIM, LPIPS測定値を用いたLOLおよびSICEデータセットの総合的な実験を通じて, 最先端の手法を超越し, 低照度画像強調におけるその有効性を示す。
関連論文リスト
- CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
低照度画像強調(LLIE)は、低照度画像を改善することを目的としている。
既存の手法では、様々な明るさ劣化からの回復の不確実性と、テクスチャと色情報の喪失という2つの課題に直面している。
我々は、量子化された先行値と画像の精細化を利用して、新しいエンハンスメント手法、CodeEnhanceを提案する。
論文 参考訳(メタデータ) (2024-04-08T07:34:39Z) - LDM-ISP: Enhancing Neural ISP for Low Light with Latent Diffusion Models [54.93010869546011]
本稿では,事前学習した潜伏拡散モデルを用いて,超低照度画像の高精細化のためのニューラルISPを実現することを提案する。
具体的には、RAWドメイン上で動作するために事前訓練された潜在拡散モデルを調整するために、軽量なテーミングモジュールのセットをトレーニングする。
遅延拡散モデルにおけるUNet復調と復号化の異なる役割を観察し、低照度画像強調タスクを遅延空間低周波コンテンツ生成と復号位相高周波ディテール保守に分解するきっかけとなる。
論文 参考訳(メタデータ) (2023-12-02T04:31:51Z) - Cycle-Interactive Generative Adversarial Network for Robust Unsupervised
Low-Light Enhancement [109.335317310485]
CIGAN(Cycle-Interactive Generative Adversarial Network)は、低照度画像間の照明分布の転送を改善できるだけでなく、詳細な信号も操作できる。
特に、提案した低照度誘導変換は、低照度GAN生成器から劣化GAN生成器へ、低照度画像の特徴をフォワードする。
論文 参考訳(メタデータ) (2022-07-03T06:37:46Z) - An Effective Image Restorer: Denoising and Luminance Adjustment for
Low-photon-count Imaging [6.358214877782411]
量子画像センサ(QIS)のイメージングシミュレーションによる低光子数条件下での原像復元
我々は,多層ピラミッド遮音ネットワーク (MPDNet) と輝度調整モジュール (LA) から構成される軽量なフレームワークを開発し,個別の遮音・照度向上を実現する。
画像復元装置は、雑音を抑え、輝度と色を効果的に回復することにより、様々な光子レベルの劣化画像に対して優れた性能が得られる。
論文 参考訳(メタデータ) (2021-10-29T12:16:30Z) - CERL: A Unified Optimization Framework for Light Enhancement with
Realistic Noise [81.47026986488638]
現実世界で撮影された低照度画像は、センサーノイズによって必然的に破損する。
既存の光強調法は、拡張中の現実世界のノイズの重要な影響を見落としているか、ノイズ除去を別の前処理または後処理のステップとして扱うかのどちらかである。
実世界の低照度雑音画像(CERL)のコーディネート・エンハンスメントを行い,光強調部と雑音抑制部を一体化・物理接地したフレームワークにシームレスに統合する。
論文 参考訳(メタデータ) (2021-08-01T15:31:15Z) - Progressive Joint Low-light Enhancement and Noise Removal for Raw Images [10.778200442212334]
モバイル機器の低照度撮像は、比較的小さな開口部を通過する入射光が不足しているため、通常困難である。
そこで我々は,共同照明調整,色強調,遮音を行う低照度画像処理フレームワークを提案する。
我々のフレームワークは、他のカメラモデルに適応する際に、大量のデータを再構成する必要はない。
論文 参考訳(メタデータ) (2021-06-28T16:43:52Z) - Low-Light Maritime Image Enhancement with Regularized Illumination
Optimization and Deep Noise Suppression [5.401654133604235]
本稿では,照明の正規化と雑音抑圧による低照度画像の高精細化を提案する。
人工海事画像と現実海事画像の総合的な実験を行い,提案手法と最先端画像との比較を行った。
論文 参考訳(メタデータ) (2020-08-09T17:05:23Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
低照度画像は、低コントラスト、色歪み、測定ノイズによる視界の低下に悩まされる。
本稿では,低照度画像強調のための深層学習手法を提案する。
提案手法は最先端の手法と非常に競合し, 極めて低照度で撮影した画像の処理において, 他に比べて大きな優位性を有する。
論文 参考訳(メタデータ) (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
我々は、実世界の低照度画像を教師なしで拡張する2段階のGANベースのフレームワークを学習する。
提案手法は,照度向上と雑音低減の両面から,最先端の教師なし画像強調法より優れる。
論文 参考訳(メタデータ) (2020-05-06T13:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。