Lightweight yet Efficient: An External Attentive Graph Convolutional Network with Positional Prompts for Sequential Recommendation
- URL: http://arxiv.org/abs/2502.15331v2
- Date: Tue, 04 Mar 2025 02:18:36 GMT
- Title: Lightweight yet Efficient: An External Attentive Graph Convolutional Network with Positional Prompts for Sequential Recommendation
- Authors: Jinyu Zhang, Chao Li, Zhongying Zhao,
- Abstract summary: We propose an External Attentive Graph convolutional network with Positional prompts for Sequential recommendation, namely EA-GPS.<n>We show that the proposed EA-GPS outperforms the state-of-the-art methods.
- Score: 8.49353541052153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-based Sequential Recommender systems (GSRs) have gained significant research attention due to their ability to simultaneously handle user-item interactions and sequential relationships between items. Current GSRs often utilize composite or in-depth structures for graph encoding (e.g., the Graph Transformer). Nevertheless, they have high computational complexity, hindering the deployment on resource-constrained edge devices. Moreover, the relative position encoding in Graph Transformer has difficulty in considering the complicated positional dependencies within sequence. To this end, we propose an External Attentive Graph convolutional network with Positional prompts for Sequential recommendation, namely EA-GPS. Specifically, we first introduce an external attentive graph convolutional network that linearly measures the global associations among nodes via two external memory units. Then, we present a positional prompt-based decoder that explicitly treats the absolute item positions as external prompts. By introducing length-adaptive sequential masking and a soft attention network, such a decoder facilitates the model to capture the long-term positional dependencies and contextual relationships within sequences. Extensive experimental results on five real-world datasets demonstrate that the proposed EA-GPS outperforms the state-of-the-art methods. Remarkably, it achieves the superior performance while maintaining a smaller parameter size and lower training overhead. The implementation of this work is publicly available at https://github.com/ZZY-GraphMiningLab/EA-GPS.
Related papers
- Position-aware Graph Transformer for Recommendation [13.448664870389722]
We propose a new graph transformer (GT) framework -- textitPosition-aware Graph Transformer for Recommendation (PGTR)<n>The key insight is to explicitly incorporate node position and structure information from the user-item interaction graph into GT architecture.<n> Empirical studies demonstrate the effectiveness of the proposed PGTR method when implemented on various GCN-based backbones across four real-world datasets.
arXiv Detail & Related papers (2024-12-25T01:22:35Z) - LASE: Learned Adjacency Spectral Embeddings [7.612218105739107]
We learn nodal Adjacency Spectral Embeddings (ASE) from graph inputs.
LASE is interpretable, parameter efficient, robust to inputs with unobserved edges.
LASE layers combine Graph Convolutional Network (GCN) and fully-connected Graph Attention Network (GAT) modules.
arXiv Detail & Related papers (2024-12-23T17:35:19Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.<n>We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.<n>Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Long Range Graph Benchmark [32.317725340138104]
MP-GNNs that simply rely on 1-hop message passing often fare better in several existing graph benchmarks.
We benchmark both baseline GNNs and Graph Transformer networks to verify that the models which capture long-range dependencies perform significantly better on these tasks.
arXiv Detail & Related papers (2022-06-16T13:33:22Z) - Rewiring with Positional Encodings for Graph Neural Networks [37.394229290996364]
Several recent works use positional encodings to extend receptive fields of graph neural network layers equipped with attention mechanisms.
We use positional encodings to expand receptive fields to $r$-hop neighborhoods.
We obtain improvements on a variety of models and datasets and reach competitive performance using traditional GNNs or graph Transformers.
arXiv Detail & Related papers (2022-01-29T22:26:02Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
We propose a new dynamic modality-aware filter generation module (named MFGNet) to boost the message communication between visible and thermal data.
We generate dynamic modality-aware filters with two independent networks. The visible and thermal filters will be used to conduct a dynamic convolutional operation on their corresponding input feature maps respectively.
To address issues caused by heavy occlusion, fast motion, and out-of-view, we propose to conduct a joint local and global search by exploiting a new direction-aware target-driven attention mechanism.
arXiv Detail & Related papers (2021-07-22T03:10:51Z) - Graph Convolutional Embeddings for Recommender Systems [67.5973695167534]
We propose a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
More specifically, we define a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions.
arXiv Detail & Related papers (2021-03-05T10:46:16Z) - RGCF: Refined Graph Convolution Collaborative Filtering with concise and
expressive embedding [42.46797662323393]
We develop a new GCN-based Collaborative Filtering model, named Refined Graph convolution Collaborative Filtering(RGCF)
RGCF is more capable for capturing the implicit high-order connectivities inside the graph and the resultant vector representations are more expressive.
We conduct extensive experiments on three public million-size datasets, demonstrating that our RGCF significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2020-07-07T12:26:10Z) - Pointer Graph Networks [48.44209547013781]
Graph neural networks (GNNs) are typically applied to static graphs that are assumed to be known upfront.
Pointer Graph Networks (PGNs) augment sets or graphs with additional inferred edges for improved model generalisation ability.
PGNs allow each node to dynamically point to another node, followed by message passing over these pointers.
arXiv Detail & Related papers (2020-06-11T12:52:31Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z) - Graph Convolution Machine for Context-aware Recommender System [59.50474932860843]
We extend the advantages of graph convolutions to context-aware recommender system (CARS)
We propose textitGraph Convolution Machine (GCM), an end-to-end framework that consists of three components: an encoder, graph convolution layers, and a decoder.
We conduct experiments on three real-world datasets from Yelp and Amazon, validating the effectiveness of GCM and the benefits of performing graph convolutions for CARS.
arXiv Detail & Related papers (2020-01-30T15:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.