Evaluating Social Biases in LLM Reasoning
- URL: http://arxiv.org/abs/2502.15361v1
- Date: Fri, 21 Feb 2025 10:16:07 GMT
- Title: Evaluating Social Biases in LLM Reasoning
- Authors: Xuyang Wu, Jinming Nian, Zhiqiang Tao, Yi Fang,
- Abstract summary: This paper evaluated the 8B and 32B variants of DeepSeek-R1 against their instruction tuned counterparts on the BBQ dataset.<n>To the best of our knowledge, this empirical study is the first to assess bias issues in LLM reasoning.
- Score: 19.824838766883534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the recent development of AI reasoning, large language models (LLMs) are trained to automatically generate chain-of-thought reasoning steps, which have demonstrated compelling performance on math and coding tasks. However, when bias is mixed within the reasoning process to form strong logical arguments, it could cause even more harmful results and further induce hallucinations. In this paper, we have evaluated the 8B and 32B variants of DeepSeek-R1 against their instruction tuned counterparts on the BBQ dataset, and investigated the bias that is elicited out and being amplified through reasoning steps. To the best of our knowledge, this empirical study is the first to assess bias issues in LLM reasoning.
Related papers
- Have Large Language Models Learned to Reason? A Characterization via 3-SAT Phase Transition [11.422434149376478]
Large Language Models (LLMs) have been touted as AI models possessing advanced reasoning abilities.
In theory, autoregressive LLMs with Chain-of-Thought (CoT) can perform more serial computations to solve complex reasoning tasks.
Recent studies suggest that, despite this capacity, LLMs do not truly learn to reason but instead fit on statistical features.
arXiv Detail & Related papers (2025-04-04T20:57:36Z) - Unveiling the Magic of Code Reasoning through Hypothesis Decomposition and Amendment [54.62926010621013]
We introduce a novel task, code reasoning, to provide a new perspective for the reasoning abilities of large language models.<n>We summarize three meta-benchmarks based on established forms of logical reasoning, and instantiate these into eight specific benchmark tasks.<n>We present a new pathway exploration pipeline inspired by human intricate problem-solving methods.
arXiv Detail & Related papers (2025-02-17T10:39:58Z) - Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying [0.3659498819753633]
State-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning.<n>This paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation.<n>We show that employing these critical questions can improve the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-19T18:51:30Z) - RATIONALYST: Pre-training Process-Supervision for Improving Reasoning [41.9992614617405]
We introduce RATIONALYST, a model for process-supervision of reasoning based on pre-training.
We extract 79k rationales from web-scale unlabelled dataset (the Pile) and a combination of reasoning datasets with minimal human intervention.
Fine-tuned from LLaMa-3-8B, RATIONALYST improves the accuracy of reasoning by an average of 3.9% on 7 representative reasoning benchmarks.
arXiv Detail & Related papers (2024-10-01T20:05:51Z) - A Systematic Analysis of Large Language Models as Soft Reasoners: The Case of Syllogistic Inferences [5.141416267381492]
We consider the case of syllogistic reasoning, an area of deductive reasoning studied extensively in logic and cognitive psychology.
We investigate the effects of chain-of-thought reasoning, in-context learning, and supervised fine-tuning on syllogistic reasoning.
Our results suggest that the behavior of pre-trained LLMs can be explained by cognitive science.
arXiv Detail & Related papers (2024-06-17T08:59:04Z) - A Peek into Token Bias: Large Language Models Are Not Yet Genuine Reasoners [58.15511660018742]
This study introduces a hypothesis-testing framework to assess whether large language models (LLMs) possess genuine reasoning abilities.
We develop carefully controlled synthetic datasets, featuring conjunction fallacy and syllogistic problems.
arXiv Detail & Related papers (2024-06-16T19:22:53Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
Recently developed large language models (LLMs) have been shown to perform remarkably well on a wide range of language understanding tasks.
But, can they really "reason" over the natural language?
This question has been receiving significant research attention and many reasoning skills such as commonsense, numerical, and qualitative have been studied.
arXiv Detail & Related papers (2024-04-23T21:08:49Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
We take a closer look at the self-verification abilities of large language models (LLMs) in the context of logical reasoning.
Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods.
arXiv Detail & Related papers (2023-11-14T07:13:10Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
We show that large language models (LLMs) exhibit failure patterns akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks.
We propose a novel reasoning approach named Concise and Organized Perception (COP)
COP carefully analyzes the given statements to identify the most pertinent information while eliminating redundancy efficiently.
arXiv Detail & Related papers (2023-10-05T04:47:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.