論文の概要: Super-Resolution for Interferometric Imaging: Model Comparisons and Performance Analysis
- arxiv url: http://arxiv.org/abs/2502.15397v1
- Date: Fri, 21 Feb 2025 11:50:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 19:42:07.629042
- Title: Super-Resolution for Interferometric Imaging: Model Comparisons and Performance Analysis
- Title(参考訳): 干渉画像の超解像:モデルの比較と性能解析
- Authors: Hasan Berkay Abdioglu, Rana Gursoy, Yagmur Isik, Ibrahim Cem Balci, Taha Unal, Kerem Bayer, Mustafa Ismail Inal, Nehir Serin, Muhammed Furkan Kosar, Gokhan Bora Esmer, Huseyin Uvet,
- Abstract要約: この研究は、超解像モデルRCANとReal-ESRGANの2つを評価し、マイクロ粒子ベースのデータセットから高分解能インターフェログラムを再構成する効果について評価した。
その結果、RCANは優れた数値精度を実現し、高精度な位相マップ再構成を必要とするアプリケーションに最適であることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study investigates the application of Super-Resolution techniques in holographic microscopy to enhance quantitative phase imaging. An off-axis Mach-Zehnder interferometric setup was employed to capture interferograms. The study evaluates two Super-Resolution models, RCAN and Real-ESRGAN, for their effectiveness in reconstructing high-resolution interferograms from a microparticle-based dataset. The models were assessed using two primary approaches: image-based analysis for structural detail enhancement and morphological evaluation for maintaining sample integrity and phase map accuracy. The results demonstrate that RCAN achieves superior numerical precision, making it ideal for applications requiring highly accurate phase map reconstruction, while Real-ESRGAN enhances visual quality and structural coherence, making it suitable for visualization-focused applications. This study highlights the potential of Super-Resolution models in overcoming diffraction-imposed resolution limitations in holographic microscopy, opening the way for improved imaging techniques in biomedical diagnostics, materials science, and other high-precision fields.
- Abstract(参考訳): 本研究では, ホログラフィーへの超解像法の適用について検討した。
オフ軸マッハ・ツェンダー干渉計を用いて干渉計を捕捉した。
この研究は、超解像モデルRCANとReal-ESRGANの2つを評価し、マイクロ粒子ベースのデータセットから高分解能インターフェログラムを再構成する効果について評価した。
モデルは2つの主要なアプローチを用いて評価された: 構造的詳細化のための画像ベース解析と、サンプルの完全性を維持するための形態的評価と位相マップの精度。
その結果、RCANは優れた数値精度を実現し、高精度な位相マップ再構成を必要とするアプリケーションに最適であり、Real-ESRGANは視覚的品質と構造的コヒーレンスを高め、視覚化にフォーカスしたアプリケーションに適していることが示された。
本研究は, ホログラフィーにおける回折照射分解能限界を克服し, バイオメディカル診断, 材料科学, その他の高精度分野におけるイメージング技術の改善への道を開くためのスーパーリゾリューションモデルの可能性を明らかにする。
関連論文リスト
- GAN-Based Architecture for Low-dose Computed Tomography Imaging Denoising [1.0138723409205497]
GAN(Generative Adversarial Networks)は低線量CT(LDCT)領域における革命的要素として浮上している。
本総説では,GANに基づくLDCT復調技術の急速な進歩を概観する。
論文 参考訳(メタデータ) (2024-11-14T15:26:10Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
ニュージーランドの臨床試験において,PCCT画像の半減量と2倍の速度で再現する深層学習に基づくアプローチを提案する。
本稿では,GPUメモリの制限を緩和するパッチベースのボリュームリファインメントネットワーク,合成データを用いたトレーニングネットワーク,およびモデルベースの反復リファインメントを用いて,合成データと実世界のギャップを埋める。
論文 参考訳(メタデータ) (2024-03-19T00:07:48Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Fine-tuned Generative Adversarial Network-based Model for Medical Image Super-Resolution [2.647302105102753]
The Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is a practical model for recovery HR images from real-world LR images。
実世界の画像劣化をシミュレートするReal-ESRGANの高次劣化モデルを用いる。
提案モデルでは,Real-ESRGANモデルに比べて知覚品質が優れ,細部を効果的に保存し,より現実的なテクスチャで画像を生成する。
論文 参考訳(メタデータ) (2022-11-01T16:48:04Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial
Network with Attention and Cyclic Loss [3.4358954898228604]
超解像法はMRIの高速化に優れた性能を示した。
場合によっては、スキャン時間が長い場合でも高解像度画像を得るのは困難である。
我々は,周期的損失と注意機構を有するGAN(Generative Adversarial Network)を用いた新しい超解像法を提案した。
論文 参考訳(メタデータ) (2021-07-21T10:07:22Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。