Textual-to-Visual Iterative Self-Verification for Slide Generation
- URL: http://arxiv.org/abs/2502.15412v1
- Date: Fri, 21 Feb 2025 12:21:09 GMT
- Title: Textual-to-Visual Iterative Self-Verification for Slide Generation
- Authors: Yunqing Xu, Xinbei Ma, Jiyang Qiu, Hai Zhao,
- Abstract summary: We decompose the task of generating missing presentation slides into two key components: content generation and layout generation.<n>Our approach significantly outperforms baseline methods in terms of alignment, logical flow, visual appeal, and readability.
- Score: 46.99825956909532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating presentation slides is a time-consuming task that urgently requires automation. Due to their limited flexibility and lack of automated refinement mechanisms, existing autonomous LLM-based agents face constraints in real-world applicability. We decompose the task of generating missing presentation slides into two key components: content generation and layout generation, aligning with the typical process of creating academic slides. First, we introduce a content generation approach that enhances coherence and relevance by incorporating context from surrounding slides and leveraging section retrieval strategies. For layout generation, we propose a textual-to-visual self-verification process using a LLM-based Reviewer + Refiner workflow, transforming complex textual layouts into intuitive visual formats. This modality transformation simplifies the task, enabling accurate and human-like review and refinement. Experiments show that our approach significantly outperforms baseline methods in terms of alignment, logical flow, visual appeal, and readability.
Related papers
- SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images.
We first present a simple yet well-crafted framework named name, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework.
arXiv Detail & Related papers (2024-10-28T18:10:26Z) - Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - ComfyGen: Prompt-Adaptive Workflows for Text-to-Image Generation [87.39861573270173]
We introduce the novel task of prompt-adaptive workflow generation, where the goal is to automatically tailor a workflow to each user prompt.
We propose two LLM-based approaches to tackle this task: a tuning-based method that learns from user-preference data, and a training-free method that uses the LLM to select existing flows.
Our work shows that prompt-dependent flow prediction offers a new pathway to improving text-to-image generation quality, complementing existing research directions in the field.
arXiv Detail & Related papers (2024-10-02T16:43:24Z) - SHAPE-IT: Exploring Text-to-Shape-Display for Generative Shape-Changing Behaviors with LLMs [12.235304780960142]
This paper introduces text-to-shape-display, a novel approach to generating dynamic shape changes in pin-based shape displays through natural language commands.
By leveraging large language models (LLMs) and AI-chaining, our approach allows users to author shape-changing behaviors on demand through text prompts without programming.
arXiv Detail & Related papers (2024-09-10T04:18:49Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - DOC2PPT: Automatic Presentation Slides Generation from Scientific
Documents [76.19748112897177]
We present a novel task and approach for document-to-slide generation.
We propose a hierarchical sequence-to-sequence approach to tackle our task in an end-to-end manner.
Our approach exploits the inherent structures within documents and slides and incorporates paraphrasing and layout prediction modules to generate slides.
arXiv Detail & Related papers (2021-01-28T03:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.