PreGenie: An Agentic Framework for High-quality Visual Presentation Generation
- URL: http://arxiv.org/abs/2505.21660v1
- Date: Tue, 27 May 2025 18:36:19 GMT
- Title: PreGenie: An Agentic Framework for High-quality Visual Presentation Generation
- Authors: Xiaojie Xu, Xinli Xu, Sirui Chen, Haoyu Chen, Fan Zhang, Ying-Cong Chen,
- Abstract summary: PreGenie is an agentic and modular framework powered by multimodal large language models (MLLMs) for generating high-quality visual presentations.<n>It operates in two stages: (1) Analysis and Initial Generation, which summarizes multimodal input and generates initial code, and (2) Review and Re-generation, which iteratively reviews intermediate code and rendered slides to produce final, high-quality presentations.
- Score: 25.673526096069548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual presentations are vital for effective communication. Early attempts to automate their creation using deep learning often faced issues such as poorly organized layouts, inaccurate text summarization, and a lack of image understanding, leading to mismatched visuals and text. These limitations restrict their application in formal contexts like business and scientific research. To address these challenges, we propose PreGenie, an agentic and modular framework powered by multimodal large language models (MLLMs) for generating high-quality visual presentations. PreGenie is built on the Slidev presentation framework, where slides are rendered from Markdown code. It operates in two stages: (1) Analysis and Initial Generation, which summarizes multimodal input and generates initial code, and (2) Review and Re-generation, which iteratively reviews intermediate code and rendered slides to produce final, high-quality presentations. Each stage leverages multiple MLLMs that collaborate and share information. Comprehensive experiments demonstrate that PreGenie excels in multimodal understanding, outperforming existing models in both aesthetics and content consistency, while aligning more closely with human design preferences.
Related papers
- Multi-modal Mutual-Guidance Conditional Prompt Learning for Vision-Language Models [21.20658517302458]
MuGCP (Multi-modal Mutual-Guidance Conditional Prompt Learning) is a novel paradigm designed for conditional prompt generation.<n> AMG module generates Visual Conditional Prompts (VCP), enhancing the model's performance in multi-modal tasks.<n>MPF mechanism integrates SCP andVCP with contextual prompts, ensuring seamless coordination.
arXiv Detail & Related papers (2025-07-11T08:45:27Z) - Vision as a Dialect: Unifying Visual Understanding and Generation via Text-Aligned Representations [33.11867433769496]
This paper presents a framework that attempts to unify visual understanding and generation within a shared semantic representation.<n>At its core is the Text-Aligned Tokenizer (TA-Tok), which converts images into discrete tokens using a text-aligned codebook projected from a large language model's (LLM) vocabulary.<n> Experiments across benchmarks show that Tar matches or surpasses existing multimodal LLM methods, achieving faster convergence and greater training efficiency.
arXiv Detail & Related papers (2025-06-23T17:59:14Z) - Decoupled Visual Interpretation and Linguistic Reasoning for Math Problem Solving [57.22004912994658]
Current large vision-language models (LVLMs) typically employ a connector module to link visual features with text embeddings of large language models (LLMs)<n>This paper proposes a paradigm shift: instead of training end-to-end vision-language reasoning models, we advocate for developing a decoupled reasoning framework.
arXiv Detail & Related papers (2025-05-23T08:18:00Z) - CAFe: Unifying Representation and Generation with Contrastive-Autoregressive Finetuning [24.981279071712173]
We introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks.<n>Our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks.
arXiv Detail & Related papers (2025-03-25T17:57:17Z) - VARGPT: Unified Understanding and Generation in a Visual Autoregressive Multimodal Large Language Model [38.61292051733335]
We present VARGPT, a novel multimodal large language model (MLLM) that unifies visual understanding and generation within a single autoregressive framework.<n>VarGPT employs a next-token prediction paradigm for visual understanding and a next-scale prediction paradigm for visual autoregressive generation.<n> Notably, VARGPT naturally supports capabilities in autoregressive visual generation and instruction-to-image synthesis, showcasing its versatility in both visual understanding and generation tasks.
arXiv Detail & Related papers (2025-01-21T17:50:43Z) - Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
Leopard is a vision-language model for handling vision-language tasks involving multiple text-rich images.
First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios.
Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length.
arXiv Detail & Related papers (2024-10-02T16:55:01Z) - MIO: A Foundation Model on Multimodal Tokens [74.85153216521945]
We introduce MIO, a novel foundation model built on multimodal tokens.<n>MIO is capable of understanding and generating speech, text, images, and videos in an end-to-end, autoregressive manner.
arXiv Detail & Related papers (2024-09-26T09:57:16Z) - Harmonizing Visual Text Comprehension and Generation [31.605599298507293]
We present TextHarmony, a unified and versatile multimodal generative model proficient in comprehending and generating visual text.
We propose Slide-LoRA, which aggregates modality-specific and modality-agnostic LoRA experts, partially decoupling the multimodal generation space.
Comprehensive experiments across various benchmarks demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-07-23T10:11:56Z) - Prompt-Consistency Image Generation (PCIG): A Unified Framework Integrating LLMs, Knowledge Graphs, and Controllable Diffusion Models [20.19571676239579]
We introduce a novel diffusion-based framework to enhance the alignment of generated images with their corresponding descriptions.
Our framework is built upon a comprehensive analysis of inconsistency phenomena, categorizing them based on their manifestation in the image.
We then integrate a state-of-the-art controllable image generation model with a visual text generation module to generate an image that is consistent with the original prompt.
arXiv Detail & Related papers (2024-06-24T06:12:16Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.<n>Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.<n>We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - InternLM-XComposer2: Mastering Free-form Text-Image Composition and
Comprehension in Vision-Language Large Model [108.42241250772643]
We introduce InternLM-XComposer2, a vision-language model excelling in free-form text-image composition and comprehension.
This model goes beyond conventional vision-language understanding, adeptly crafting interleaved text-image content from diverse inputs.
Experimental results demonstrate the superiority of InternLM-XComposer2 based on InternLM2-7B in producing high-quality long-text multi-modal content.
arXiv Detail & Related papers (2024-01-29T18:59:02Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.