論文の概要: Anatomy-Informed Deep Learning and Radiomics for Automated Neurofibroma Segmentation in Whole-Body MRI
- arxiv url: http://arxiv.org/abs/2502.15424v1
- Date: Fri, 21 Feb 2025 12:49:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 16:10:18.272072
- Title: Anatomy-Informed Deep Learning and Radiomics for Automated Neurofibroma Segmentation in Whole-Body MRI
- Title(参考訳): 全体MRIにおける解剖学的インフォームドディープラーニングと放射線治療
- Authors: Georgii Kolokolnikov, Marie-Lena Schmalhofer, Lennart Well, Said Farschtschi, Victor-Felix Mautner, Inka Ristow, Rene Werner,
- Abstract要約: 神経線維腫1型は神経線維腫(NF)の発生を特徴とする遺伝疾患である
本研究では,WB-MRIにおけるNFセグメンテーションのための完全自動パイプラインを提示し,解析する。
実験の結果,Scan Dice similarity Coefficient (DSC) は68%, DSCは21%, F1スコアは2倍に改善した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Neurofibromatosis Type 1 is a genetic disorder characterized by the development of neurofibromas (NFs), which exhibit significant variability in size, morphology, and anatomical location. Accurate and automated segmentation of these tumors in whole-body magnetic resonance imaging (WB-MRI) is crucial to assess tumor burden and monitor disease progression. In this study, we present and analyze a fully automated pipeline for NF segmentation in fat-suppressed T2-weighted WB-MRI, consisting of three stages: anatomy segmentation, NF segmentation, and tumor candidate classification. In the first stage, we use the MRSegmentator model to generate an anatomy segmentation mask, extended with a high-risk zone for NFs. This mask is concatenated with the input image as anatomical context information for NF segmentation. The second stage employs an ensemble of 3D anisotropic anatomy-informed U-Nets to produce an NF segmentation confidence mask. In the final stage, tumor candidates are extracted from the confidence mask and classified based on radiomic features, distinguishing tumors from non-tumor regions and reducing false positives. We evaluate the proposed pipeline on three test sets representing different conditions: in-domain data (test set 1), varying imaging protocols and field strength (test set 2), and low tumor burden cases (test set 3). Experimental results show a 68% improvement in per-scan Dice Similarity Coefficient (DSC), a 21% increase in per-tumor DSC, and a two-fold improvement in F1 score for tumor detection in high tumor burden cases by integrating anatomy information. The method is integrated into the 3D Slicer platform for practical clinical use, with the code publicly accessible.
- Abstract(参考訳): 神経線維腫症1型(Neurofibromatosis Type 1)は、神経線維腫(NFs)の発達を特徴とする遺伝疾患であり、大きさ、形態、解剖学的位置において有意な変動を示す。
全身磁気共鳴画像(WB-MRI)における腫瘍の正確な分画と自動分画は,腫瘍の負担評価と疾患進展の監視に不可欠である。
本研究では, 脂肪抑制型T2強調WB-MRIにおいて, 解剖学的セグメンテーション, NFセグメンテーション, 腫瘍候補分類の3段階からなる完全自動NFセグメンテーションパイプラインを提示し, 解析した。
第1段階では,NFの高リスクゾーンで拡張された解剖学的セグメンテーションマスクを生成するためにMSSegmentatorモデルを用いる。
NFセグメンテーションのための解剖学的コンテキスト情報として入力画像と結合する。
第2段階では、NFセグメンテーション信頼マスクを生成するために、3D異方性解剖学的インフォームドU-ネットのアンサンブルを使用する。
最終段階では、信頼マスクから腫瘍候補を抽出し、放射線学的特徴に基づいて分類し、非腫瘍領域から腫瘍を識別し、偽陽性を減少させる。
提案したパイプラインは, 領域内データ(テストセット1), 異なる画像プロトコル, フィールド強度(テストセット2), 低腫瘍負担症例(テストセット3)の3つの条件で評価した。
実験の結果,Scan Dice similarity Coefficient (DSC) は68%, DSCは21%, F1スコアは2倍に改善した。
この手法は3Dスライダプラットフォームに統合され、実用的な臨床用途に利用でき、コードは一般に公開されている。
関連論文リスト
- Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
本研究は, 脊椎腫瘍の領域分割と局所化をAIアプローチで自動化することを目的とした, 新たなデータ拡張手法を提案する。
畳み込みニューラルネットワーク(CNN)アーキテクチャは、腫瘍の分類に用いられている。3次元の椎骨分割とラベル付け技術は、腰椎の腫瘍の正確な位置を特定するのに役立つ。
その結果, 腫瘍分節の99%の精度, 腫瘍分類の98%の精度, 腫瘍局在の99%の精度が得られた。
論文 参考訳(メタデータ) (2024-05-07T05:55:50Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
Mask-Enhanced SAM (M-SAM) は, 腫瘍の3次元セグメント化に適した革新的なアーキテクチャである。
本稿では,M-SAM内におけるMask-Enhanced Adapter (MEA) を提案する。
我々のM-SAMは高いセグメンテーション精度を達成し、またロバストな一般化を示す。
論文 参考訳(メタデータ) (2024-03-09T13:37:02Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Parotid Gland MRI Segmentation Based on Swin-Unet and Multimodal Images [7.934520786027202]
耳下腺腫瘍は頭頸部腫瘍の約2%から10%を占める。
ディープラーニングの手法は急速に発展しており、特にTransformerはコンピュータビジョンにおける従来の畳み込みニューラルネットワークに勝っている。
テストセットのモデルのDSCは88.63%、MPAは99.31%、MIoUは83.99%、HDは3.04であった。
論文 参考訳(メタデータ) (2022-06-07T14:20:53Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor
Analysis using MRI [0.28675177318965034]
磁気共鳴画像(MRI)における脳腫瘍の検出・分類のための2段階深層学習フレームワークの提案
第1フェーズでは、健康な人から腫瘍MRI画像を検出するために、新しい深層化特徴とアンサンブル分類器(DBF-EC)方式が提案されている。
第2段階では, 異なる腫瘍タイプを分類するために, 動的静的特徴とML分類器からなる融合型脳腫瘍分類法が提案されている。
論文 参考訳(メタデータ) (2022-01-14T10:24:47Z) - 3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation Framework [3.0261170901794308]
グリオーマは最も一般的な脳悪性腫瘍であり、高い死亡率と3%以上の死亡率を有する。
このクリニックで脳腫瘍を取得する主要な方法は、マルチモーダルMRIスキャン画像から脳腫瘍領域のMRIである。
我々はAGSE-VNetと呼ばれる自動脳腫瘍MRIデータセグメンテーションフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-26T09:04:59Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
ダイナミックコントラストCT(Dynamic contrast Computed Tomography)のための完全自動多段階肝腫瘍評価フレームワークを提案する。
本システムでは, 腫瘍提案検出, 腫瘍採取, 原発部位の選択, 深部テクスチャに基づく腫瘍評価の4段階からなる。
論文 参考訳(メタデータ) (2020-06-28T19:55:34Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。