R-LoRA: Random Initialization of Multi-Head LoRA for Multi-Task Learning
- URL: http://arxiv.org/abs/2502.15455v1
- Date: Fri, 21 Feb 2025 13:30:21 GMT
- Title: R-LoRA: Random Initialization of Multi-Head LoRA for Multi-Task Learning
- Authors: Jinda Liu, Yi Chang, Yuan Wu,
- Abstract summary: Low-rank Adaptation (LoRA) is one of the most popular parameter-efficient fine-tuning methods.<n>We propose R-LoRA, which incorporates Multi-Head Randomization.<n>Experiments demonstrate that R-LoRA is better at capturing task-specific knowledge.
- Score: 12.431575579432458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning large language models (LLMs) is prohibitively expensive in terms of computational and memory costs. Low-rank Adaptation (LoRA), as one of the most popular parameter-efficient fine-tuning (PEFT) methods, offers a cost-effective alternative by approximating the model changes $\Delta W \in \mathbb{R}^{m \times n}$ through the product of down-projection matrix $A \in \mathbb{R}^{m \times r}$ and head matrix $B \in \mathbb{R}^{r \times n}$, where $r \ll \min(m, n)$. In real-world scenarios, LLMs are fine-tuned on data from multiple domains to perform tasks across various fields, embodying multi-task learning (MTL). LoRA often underperforms in such complex scenarios. To enhance LoRA's capability in multi-task learning, we propose R-LoRA, which incorporates Multi-Head Randomization. Multi-Head Randomization diversifies the head matrices through Multi-Head Random Initialization and Multi-Head Dropout, enabling more efficient learning of task-specific features while maintaining shared knowledge representation. Extensive experiments demonstrate that R-LoRA is better at capturing task-specific knowledge, thereby improving performance in multi-task scenarios. The code is available at https://github.com/jinda-liu/R-LoRA.
Related papers
- Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning [20.31474646915225]
We show that a simplified multi-head architecture with high inter-head similarity outperforms complex multi-adapter and multi-head systems.<n>We propose Align-LoRA, which incorporates an explicit loss to align task representations within the shared adapter space.
arXiv Detail & Related papers (2025-08-07T07:02:55Z) - LoRI: Reducing Cross-Task Interference in Multi-Task Low-Rank Adaptation [43.28443278149958]
Low-Rank Adaptation (LoRA) has emerged as a popular parameter-efficient fine-tuning (PEFT) method for Large Language Models (LLMs)
We propose LoRA with Reduced Interference (LoRI), a simple yet effective approach that freezes the projection matrices $A$ as random projections and sparsifies the matrices $B$ using task-specific masks.
arXiv Detail & Related papers (2025-04-10T04:46:04Z) - In-Context Meta LoRA Generation [61.690065588534296]
Low-rank Adaptation (LoRA) has demonstrated remarkable capabilities for task specific fine-tuning.<n>We propose In-Context Meta LoRA (ICM-LoRA), a novel approach that efficiently achieves task-specific customization of large language models.<n>ICM-LoRA enables more accurate LoRA parameter reconstruction than current parameter reconstruction methods.
arXiv Detail & Related papers (2025-01-29T13:12:01Z) - Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning [53.98941571078398]
Low-Rank Adaptation (LoRA) is widely used for adapting large language models (LLMs) to specific domains due to its efficiency and modularity.<n>Recent works adopt Mixture of Experts (MoE) by treating each LoRA module as an expert, thereby mitigating task interference through multiple specialized LoRA modules.<n>While effective, these methods often isolate knowledge within individual tasks, failing to fully exploit the shared knowledge across related tasks.<n>We propose Single-ranked Mixture of Experts LoRA (textbfSMoRA), which embeds MoE into LoRA by textittreating each rank as an
arXiv Detail & Related papers (2025-01-25T06:56:39Z) - MALoRA: Mixture of Asymmetric Low-Rank Adaptation for Enhanced Multi-Task Learning [29.957620178740186]
In multi-task scenarios, challenges such as training imbalance and the seesaw effect frequently emerge.
We propose Mixture of Asymmetric Low-Rank Adaptaion (MALoRA) as a flexible fine-tuning framework.
MALoRA reduces the number of trainable parameters by 30% to 48%, increases training speed by 1.2x, and matches the computational efficiency of single-task LoRA models.
arXiv Detail & Related papers (2024-10-30T07:53:52Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
We propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing multi-task learning capabilities.
MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information.
This approach enables large language models (LLMs) pre-trained on general corpus to adapt to different target task domains with a limited number of trainable parameters.
arXiv Detail & Related papers (2024-10-12T08:32:26Z) - LASeR: Learning to Adaptively Select Reward Models with Multi-Armed Bandits [56.93583799109029]
We introduce LASeR (Learning to Adaptively Select Rewards), which iteratively trains LLMs using multiple Reward Models (RMs)
Our results demonstrate that LASeR can boost iterative LLM optimization by optimizing for multiple RMs.
We also verify the presence of conflicting preferences from multiple RMs that can be mitigated using LASeR.
arXiv Detail & Related papers (2024-10-02T16:46:38Z) - CoRA: Optimizing Low-Rank Adaptation with Common Subspace of Large Language Models [7.108651381160281]
Low-Rank Adaptation (LoRA) strategy balances efficiency and performance in fine-tuning large models.
We propose textbfCoRA: leveraging shared knowledge to optimize LoRA training by substituting its matrix $B$ with a common subspace from large models.
Our experiments show that the first approach achieves the same efficacy as the original LoRA fine-tuning while being more efficient than halving parameters.
arXiv Detail & Related papers (2024-08-31T12:48:27Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [51.58020580970644]
This paper introduces a novel approach that integrates multimodal instruction tuning with Low-Rank Adaption (LoRA)<n>It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance.<n> Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks.
arXiv Detail & Related papers (2024-02-24T20:15:31Z) - LoRA-Flow: Dynamic LoRA Fusion for Large Language Models in Generative
Tasks [72.88244322513039]
LoRA employs lightweight modules to customize large language models (LLMs) for each downstream task or domain.
We propose LoRA-Flow, which utilizes dynamic weights to adjust the impact of different LoRAs.
Experiments across six generative tasks demonstrate that our method consistently outperforms baselines with task-level fusion weights.
arXiv Detail & Related papers (2024-02-18T04:41:25Z) - LoraRetriever: Input-Aware LoRA Retrieval and Composition for Mixed
Tasks in the Wild [76.67343971195267]
Low-Rank Adaptation (LoRA) provides an efficient solution for fine-tuning large language models (LLM)
LoraRetriever is a retrieve-then-compose framework that adaptively retrieves and composes multiple LoRAs according to the input prompts.
Experimental results indicate that LoraRetriever consistently outperforms the baselines.
arXiv Detail & Related papers (2024-02-15T15:02:46Z) - Chain of LoRA: Efficient Fine-tuning of Language Models via Residual
Learning [31.036465632204663]
We introduce Chain of LoRA, an iterative optimization framework inspired by the Frank-Wolfe algorithm.
We demonstrate that COLA can consistently outperform LoRA without additional computational or memory costs.
arXiv Detail & Related papers (2024-01-08T14:26:49Z) - MultiLoRA: Democratizing LoRA for Better Multi-Task Learning [20.750808913757396]
LoRA achieves remarkable resource efficiency and comparable performance when adapting LLMs for specific tasks.
LoRA is dominated by a small number of top singular vectors while fine-tuning decomposes into a set of less important unitary transforms.
We propose MultiLoRA for better multi-task adaptation by reducing the dominance of top singular vectors observed in LoRA.
arXiv Detail & Related papers (2023-11-20T02:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.