LoRI: Reducing Cross-Task Interference in Multi-Task Low-Rank Adaptation
- URL: http://arxiv.org/abs/2504.07448v1
- Date: Thu, 10 Apr 2025 04:46:04 GMT
- Title: LoRI: Reducing Cross-Task Interference in Multi-Task Low-Rank Adaptation
- Authors: Juzheng Zhang, Jiacheng You, Ashwinee Panda, Tom Goldstein,
- Abstract summary: Low-Rank Adaptation (LoRA) has emerged as a popular parameter-efficient fine-tuning (PEFT) method for Large Language Models (LLMs)<n>We propose LoRA with Reduced Interference (LoRI), a simple yet effective approach that freezes the projection matrices $A$ as random projections and sparsifies the matrices $B$ using task-specific masks.
- Score: 43.28443278149958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-Rank Adaptation (LoRA) has emerged as a popular parameter-efficient fine-tuning (PEFT) method for Large Language Models (LLMs), yet it still incurs notable overhead and suffers from parameter interference in multi-task scenarios. We propose LoRA with Reduced Interference (LoRI), a simple yet effective approach that freezes the projection matrices $A$ as random projections and sparsifies the matrices $B$ using task-specific masks. This design substantially reduces the number of trainable parameters while maintaining strong task performance. Moreover, LoRI minimizes cross-task interference in adapter merging by leveraging the orthogonality between adapter subspaces, and supports continual learning by using sparsity to mitigate catastrophic forgetting. Extensive experiments across natural language understanding, mathematical reasoning, code generation, and safety alignment tasks demonstrate that LoRI outperforms full fine-tuning and existing PEFT methods, while using up to 95% fewer trainable parameters than LoRA. In multi-task experiments, LoRI enables effective adapter merging and continual learning with reduced cross-task interference. Code is available at: https://github.com/juzhengz/LoRI
Related papers
- MoRE: A Mixture of Low-Rank Experts for Adaptive Multi-Task Learning [18.0412262027514]
We propose a novel Mixture of Low-Rank Experts (MoRE) for multi-task.<n>Instead of using an individual LoRA for each task, we align different ranks of LoRA module with different tasks.<n>We also design a novel adaptive rank selector to select the appropriate expert for each task.
arXiv Detail & Related papers (2025-05-28T12:32:09Z) - ThanoRA: Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation [73.18867725540865]
Low-Rank Adaptation (LoRA) is widely adopted for downstream fine-tuning of foundation models.<n>We propose ThanoRA, a Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation framework.
arXiv Detail & Related papers (2025-05-24T11:01:45Z) - CoLA: Collaborative Low-Rank Adaptation [3.421904493396495]
Fine-tuning a pre-trained model for specific tasks achieves strong performance; however, it is computationally expensive and inefficient.<n>LoRA, in particular, has proven effective, but its application to multi-task scenarios is limited by interference between tasks.<n>We propose CoLA, a more flexible LoRA architecture and three collaborative strategies to enhance performance by better utilizing the quantitative relationships between $A$ and $B$.
arXiv Detail & Related papers (2025-05-21T12:46:42Z) - Parameter-Efficient Fine-Tuning of Large Language Models via Deconvolution in Subspace [3.7049613588433497]
Fine-tuning large language models (LLM) for various downstream tasks has become a new paradigm.<n>Low-Rank Adaptation (LoRA) is well-known for its parameter efficiency.<n>We propose a new method for.<n>Efficient decomposition- dubbed as DCFT- via deconvolution in subspace.
arXiv Detail & Related papers (2025-03-03T11:15:50Z) - C-LoRA: Continual Low-Rank Adaptation for Pre-trained Models [26.560293264523903]
Low-Rank Adaptation (LoRA) is an efficient fine-tuning method that has been extensively applied in areas such as natural language processing and computer vision.<n>We propose Continual Low-Rank Adaptation (C-LoRA), a novel extension of LoRA for continual learning.<n>C-LoRA uses a learnable routing matrix to dynamically manage parameter updates across tasks.
arXiv Detail & Related papers (2025-02-25T07:35:36Z) - R-LoRA: Random Initialization of Multi-Head LoRA for Multi-Task Learning [12.431575579432458]
Low-rank Adaptation (LoRA) is one of the most popular parameter-efficient fine-tuning methods.<n>We propose R-LoRA, which incorporates Multi-Head Randomization.<n>Experiments demonstrate that R-LoRA is better at capturing task-specific knowledge.
arXiv Detail & Related papers (2025-02-21T13:30:21Z) - RandLoRA: Full-rank parameter-efficient fine-tuning of large models [46.25124374446935]
Low-Rank Adaptation (LoRA) and its variants have shown impressive results in reducing the number of trainable parameters and memory requirements of large transformer networks.<n>The low-rank nature of the weight update inherently limits the representation power of fine-tuned models.<n>This paper introduces RandLoRA, a method that performs full-rank updates using a learned linear combinations of low-rank, non-trainable random matrices.
arXiv Detail & Related papers (2025-02-03T01:59:45Z) - EDoRA: Efficient Weight-Decomposed Low-Rank Adaptation via Singular Value Decomposition [2.5269004336032186]
Efficient Weight-Decomposed Low-Rank Adaptation (EDoRA) is a novel PEFT method that decomposes pre-trained weights into magnitude and directional components.
EDoRA achieves competitive or superior performance compared to state-of-the-art methods, such as LoRA and DoRA.
arXiv Detail & Related papers (2025-01-21T11:42:09Z) - Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning [59.001091197106085]
Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously.
Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning.
We propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner.
arXiv Detail & Related papers (2025-01-12T17:41:23Z) - MALoRA: Mixture of Asymmetric Low-Rank Adaptation for Enhanced Multi-Task Learning [29.957620178740186]
In multi-task scenarios, challenges such as training imbalance and the seesaw effect frequently emerge.
We propose Mixture of Asymmetric Low-Rank Adaptaion (MALoRA) as a flexible fine-tuning framework.
MALoRA reduces the number of trainable parameters by 30% to 48%, increases training speed by 1.2x, and matches the computational efficiency of single-task LoRA models.
arXiv Detail & Related papers (2024-10-30T07:53:52Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
We propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing MTL capabilities.<n> MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information and capture shared knowledge.<n>This approach enables pre-trained models to jointly adapt to different target domains with a limited number of trainable parameters.
arXiv Detail & Related papers (2024-10-12T08:32:26Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
We propose ResLoRA, an improved framework of low-rank adaptation (LoRA)
Our method can achieve better results in fewer training steps without any extra trainable parameters or inference cost compared to LoRA.
The experiments on NLG, NLU, and text-to-image tasks demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2024-02-28T04:33:20Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
Low-rank adaptation (LoRA) is based on the idea that the adaptation process is intrinsically low-dimensional.
We present MELoRA, a mini-ensemble low-rank adapters that uses fewer trainable parameters while maintaining a higher rank.
Our experimental results show that, compared to LoRA, MELoRA achieves better performance with 8 times fewer trainable parameters on natural language understanding tasks and 36 times fewer trainable parameters on instruction following tasks.
arXiv Detail & Related papers (2024-02-27T07:14:12Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [51.58020580970644]
This paper introduces a novel approach that integrates multimodal instruction tuning with Low-Rank Adaption (LoRA)
It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance.
Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks.
arXiv Detail & Related papers (2024-02-24T20:15:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.