Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning
- URL: http://arxiv.org/abs/2508.05078v1
- Date: Thu, 07 Aug 2025 07:02:55 GMT
- Title: Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning
- Authors: Jinda Liu, Bo Cheng, Yi Chang, Yuan Wu,
- Abstract summary: We show that a simplified multi-head architecture with high inter-head similarity outperforms complex multi-adapter and multi-head systems.<n>We propose Align-LoRA, which incorporates an explicit loss to align task representations within the shared adapter space.
- Score: 20.31474646915225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-Efficient Fine-Tuning (PEFT) is essential for adapting Large Language Models (LLMs). In practice, LLMs are often required to handle a diverse set of tasks from multiple domains, a scenario naturally addressed by multi-task learning (MTL). Within this MTL context, a prevailing trend involves LoRA variants with multiple adapters or heads, which advocate for structural diversity to capture task-specific knowledge. Our findings present a direct challenge to this paradigm. We first show that a simplified multi-head architecture with high inter-head similarity substantially outperforms complex multi-adapter and multi-head systems. This leads us to question the multi-component paradigm itself, and we further demonstrate that a standard single-adapter LoRA, with a sufficiently increased rank, also achieves highly competitive performance. These results lead us to a new hypothesis: effective MTL generalization hinges on learning robust shared representations, not isolating task-specific features. To validate this, we propose Align-LoRA, which incorporates an explicit loss to align task representations within the shared adapter space. Experiments confirm that Align-LoRA significantly surpasses all baselines, establishing a simpler yet more effective paradigm for adapting LLMs to multiple tasks. The code is available at https://github.com/jinda-liu/Align-LoRA.
Related papers
- MoRE: A Mixture of Low-Rank Experts for Adaptive Multi-Task Learning [18.0412262027514]
We propose a novel Mixture of Low-Rank Experts (MoRE) for multi-task.<n>Instead of using an individual LoRA for each task, we align different ranks of LoRA module with different tasks.<n>We also design a novel adaptive rank selector to select the appropriate expert for each task.
arXiv Detail & Related papers (2025-05-28T12:32:09Z) - ThanoRA: Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation [73.18867725540865]
Low-Rank Adaptation (LoRA) is widely adopted for downstream fine-tuning of foundation models.<n>We propose ThanoRA, a Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation framework.
arXiv Detail & Related papers (2025-05-24T11:01:45Z) - Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning [53.053604713064544]
Low-Rank Adaptation (LoRA) is widely used for adapting large language models (LLMs) to specific domains due to its efficiency and modularity.<n>Recent works adopt Mixture of Experts (MoE) by treating each LoRA module as an expert, thereby mitigating task interference through multiple specialized LoRA modules.<n>While effective, these methods often isolate knowledge within individual tasks, failing to fully exploit the shared knowledge across related tasks.<n>We propose Single-ranked Mixture of Experts LoRA (textbfSMoRA), which embeds MoE into LoRA by textittreating each rank as an
arXiv Detail & Related papers (2025-01-25T06:56:39Z) - From Holistic to Localized: Local Enhanced Adapters for Efficient Visual Instruction Fine-Tuning [102.18178065928426]
Efficient Visual Instruction Fine-Tuning (EVIT) seeks to adapt Multimodal Large Language Models (MLLMs) to downstream tasks with minimal computational overhead.<n>We propose the Dual Low-Rank Adaptation (Dual-LoRA), a holistic-to-local framework that enhances the adapter's capacity to address data conflict.
arXiv Detail & Related papers (2024-11-19T11:03:09Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
We propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing MTL capabilities.<n> MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information and capture shared knowledge.<n>This approach enables pre-trained models to jointly adapt to different target domains with a limited number of trainable parameters.
arXiv Detail & Related papers (2024-10-12T08:32:26Z) - Mixture-of-LoRAs: An Efficient Multitask Tuning for Large Language
Models [7.966452497550907]
We propose the Mixture-of-LoRAs (MoA) architecture for multi-task learning with large language models (LLMs)
Multiple domain-specific LoRA modules can be aligned with the expert design principles observed in Mixture-of-Experts (MoE)
Each LoRA model can be iteratively adapted to a new domain, allowing for quick domain-specific adaptation.
arXiv Detail & Related papers (2024-03-06T03:33:48Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [51.58020580970644]
This paper introduces a novel approach that integrates multimodal instruction tuning with Low-Rank Adaption (LoRA)<n>It innovates upon LoRA by dynamically constructing low-rank adaptation matrices tailored to the unique demands of each input instance.<n> Experimental results on various multimodal evaluation datasets indicate that MixLoRA not only outperforms the conventional LoRA with the same or even higher ranks.
arXiv Detail & Related papers (2024-02-24T20:15:31Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - MultiLoRA: Democratizing LoRA for Better Multi-Task Learning [20.750808913757396]
LoRA achieves remarkable resource efficiency and comparable performance when adapting LLMs for specific tasks.
LoRA is dominated by a small number of top singular vectors while fine-tuning decomposes into a set of less important unitary transforms.
We propose MultiLoRA for better multi-task adaptation by reducing the dominance of top singular vectors observed in LoRA.
arXiv Detail & Related papers (2023-11-20T02:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.