Estimating Vehicle Speed on Roadways Using RNNs and Transformers: A Video-based Approach
- URL: http://arxiv.org/abs/2502.15545v1
- Date: Fri, 21 Feb 2025 15:51:49 GMT
- Title: Estimating Vehicle Speed on Roadways Using RNNs and Transformers: A Video-based Approach
- Authors: Sai Krishna Reddy Mareddy, Dhanush Upplapati, Dhanush Kumar Antharam,
- Abstract summary: This project explores the application of advanced machine learning models, specifically Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Transformers, to the task of vehicle speed estimation using video data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This project explores the application of advanced machine learning models, specifically Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), and Transformers, to the task of vehicle speed estimation using video data. Traditional methods of speed estimation, such as radar and manual systems, are often constrained by high costs, limited coverage, and potential disruptions. In contrast, leveraging existing surveillance infrastructure and cutting-edge neural network architectures presents a non-intrusive, scalable solution. Our approach utilizes LSTM and GRU to effectively manage long-term dependencies within the temporal sequence of video frames, while Transformers are employed to harness their self-attention mechanisms, enabling the processing of entire sequences in parallel and focusing on the most informative segments of the data. This study demonstrates that both LSTM and GRU outperform basic Recurrent Neural Networks (RNNs) due to their advanced gating mechanisms. Furthermore, increasing the sequence length of input data consistently improves model accuracy, highlighting the importance of contextual information in dynamic environments. Transformers, in particular, show exceptional adaptability and robustness across varied sequence lengths and complexities, making them highly suitable for real-time applications in diverse traffic conditions. The findings suggest that integrating these sophisticated neural network models can significantly enhance the accuracy and reliability of automated speed detection systems, thus promising to revolutionize traffic management and road safety.
Related papers
- Towards Efficient Real-Time Video Motion Transfer via Generative Time Series Modeling [7.3949576464066]
We propose a deep learning framework designed to significantly optimize bandwidth for motion-transfer-enabled video applications.
To capture complex motion effectively, we utilize the First Order Motion Model (FOMM), which encodes dynamic objects by detecting keypoints.
We validate our results across three datasets for video animation and reconstruction using the following metrics: Mean Absolute Error, Joint Embedding Predictive Architecture Embedding Distance, Structural Similarity Index, and Average Pair-wise Displacement.
arXiv Detail & Related papers (2025-04-07T22:21:54Z) - OneTrack-M: A multitask approach to transformer-based MOT models [0.0]
Multi-Object Tracking (MOT) is a critical problem in computer vision.<n>OneTrack-M is a transformer-based MOT model designed to enhance tracking computational efficiency and accuracy.
arXiv Detail & Related papers (2025-02-06T20:02:06Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - LinFormer: A Linear-based Lightweight Transformer Architecture For Time-Aware MIMO Channel Prediction [39.12741712294741]
6th generation (6G) mobile networks bring new challenges in supporting high-mobility communications.
We present LinFormer, an innovative channel prediction framework based on a scalable, all-linear, encoder-only Transformer model.
Our approach achieves a substantial reduction in computational complexity while maintaining high prediction accuracy, making it more suitable for deployment in cost-effective base stations (BS)
arXiv Detail & Related papers (2024-10-28T13:04:23Z) - A Novel Spike Transformer Network for Depth Estimation from Event Cameras via Cross-modality Knowledge Distillation [3.355813093377501]
Event cameras operate differently from traditional digital cameras, continuously capturing data and generating binary spikes that encode time, location, and light intensity.
This necessitates the development of innovative, spike-aware algorithms tailored for event cameras.
We propose a purely spike-driven spike transformer network for depth estimation from spiking camera data.
arXiv Detail & Related papers (2024-04-26T11:32:53Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
We propose a model that combines hybrid Transformer and self-supervised learning.
The model enhances its adaptive data augmentation by applying data augmentation techniques at the sequence-level of the traffic.
We design two self-supervised learning tasks to model the temporal and spatial dependencies, thereby improving the accuracy and ability of the model.
arXiv Detail & Related papers (2024-01-29T06:17:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting.
Transformer is the most popular framework in Natural Language Processing (NLP)
analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better.
arXiv Detail & Related papers (2021-04-12T02:29:58Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.