LinFormer: A Linear-based Lightweight Transformer Architecture For Time-Aware MIMO Channel Prediction
- URL: http://arxiv.org/abs/2410.21351v1
- Date: Mon, 28 Oct 2024 13:04:23 GMT
- Title: LinFormer: A Linear-based Lightweight Transformer Architecture For Time-Aware MIMO Channel Prediction
- Authors: Yanliang Jin, Yifan Wu, Yuan Gao, Shunqing Zhang, Shugong Xu, Cheng-Xiang Wang,
- Abstract summary: 6th generation (6G) mobile networks bring new challenges in supporting high-mobility communications.
We present LinFormer, an innovative channel prediction framework based on a scalable, all-linear, encoder-only Transformer model.
Our approach achieves a substantial reduction in computational complexity while maintaining high prediction accuracy, making it more suitable for deployment in cost-effective base stations (BS)
- Score: 39.12741712294741
- License:
- Abstract: The emergence of 6th generation (6G) mobile networks brings new challenges in supporting high-mobility communications, particularly in addressing the issue of channel aging. While existing channel prediction methods offer improved accuracy at the expense of increased computational complexity, limiting their practical application in mobile networks. To address these challenges, we present LinFormer, an innovative channel prediction framework based on a scalable, all-linear, encoder-only Transformer model. Our approach, inspired by natural language processing (NLP) models such as BERT, adapts an encoder-only architecture specifically for channel prediction tasks. We propose replacing the computationally intensive attention mechanism commonly used in Transformers with a time-aware multi-layer perceptron (TMLP), significantly reducing computational demands. The inherent time awareness of TMLP module makes it particularly suitable for channel prediction tasks. We enhance LinFormer's training process by employing a weighted mean squared error loss (WMSELoss) function and data augmentation techniques, leveraging larger, readily available communication datasets. Our approach achieves a substantial reduction in computational complexity while maintaining high prediction accuracy, making it more suitable for deployment in cost-effective base stations (BS). Comprehensive experiments using both simulated and measured data demonstrate that LinFormer outperforms existing methods across various mobility scenarios, offering a promising solution for future wireless communication systems.
Related papers
- Beam Prediction based on Large Language Models [51.45077318268427]
Millimeter-wave (mmWave) communication is promising for next-generation wireless networks but suffers from significant path loss.
Traditional deep learning models, such as long short-term memory (LSTM), enhance beam tracking accuracy however are limited by poor robustness and generalization.
In this letter, we use large language models (LLMs) to improve the robustness of beam prediction.
arXiv Detail & Related papers (2024-08-16T12:40:01Z) - PointMT: Efficient Point Cloud Analysis with Hybrid MLP-Transformer Architecture [46.266960248570086]
This study tackles the quadratic complexity of the self-attention mechanism by introducing a complexity local attention mechanism for effective feature aggregation.
We also introduce a parameter-free channel temperature adaptation mechanism that adaptively adjusts the attention weight distribution in each channel.
We show that PointMT achieves performance comparable to state-of-the-art methods while maintaining an optimal balance between performance and accuracy.
arXiv Detail & Related papers (2024-08-10T10:16:03Z) - OnDev-LCT: On-Device Lightweight Convolutional Transformers towards
federated learning [29.798780069556074]
Federated learning (FL) has emerged as a promising approach to collaboratively train machine learning models across multiple edge devices.
We propose OnDev-LCT: Lightweight Convolutional Transformers for On-Device vision tasks with limited training data and resources.
arXiv Detail & Related papers (2024-01-22T02:17:36Z) - Linear Combination of Exponential Moving Averages for Wireless Channel
Prediction [2.34863357088666]
In this work, prediction models based on the exponential moving average (EMA) are investigated in depth.
A new model that we called EMA linear combination (ELC) is introduced, explained, and evaluated experimentally.
arXiv Detail & Related papers (2023-12-13T07:44:05Z) - Toward Adaptive Semantic Communications: Efficient Data Transmission via
Online Learned Nonlinear Transform Source-Channel Coding [11.101344530143303]
We propose an online learned joint source and channel coding approach that leverages the deep learning model's overfitting property.
Specifically, we update the off-the-shelf pre-trained models after deployment in a lightweight online fashion to adapt to the distribution shifts in source data and environment domain.
We take the overfitting concept to the extreme, proposing a series of implementation-friendly methods to adapt the model or representations to an individual data or channel state instance.
arXiv Detail & Related papers (2022-11-08T16:00:27Z) - Interference Cancellation GAN Framework for Dynamic Channels [74.22393885274728]
We introduce an online training framework that can adapt to any changes in the channel.
Our framework significantly outperforms recent neural network models on highly dynamic channels.
arXiv Detail & Related papers (2022-08-17T02:01:18Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - Machine Learning for MU-MIMO Receive Processing in OFDM Systems [14.118477167150143]
We propose an ML-enhanced MU-MIMO receiver that builds on top of a conventional linear minimum mean squared error (LMMSE) architecture.
CNNs are used to compute an approximation of the second-order statistics of the channel estimation error.
A CNN-based demapper jointly processes a large number of frequency-division multiplexing symbols and subcarriers.
arXiv Detail & Related papers (2020-12-15T09:55:37Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.