論文の概要: LaTIM: Measuring Latent Token-to-Token Interactions in Mamba Models
- arxiv url: http://arxiv.org/abs/2502.15612v1
- Date: Fri, 21 Feb 2025 17:33:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 17:07:19.954704
- Title: LaTIM: Measuring Latent Token-to-Token Interactions in Mamba Models
- Title(参考訳): LaTIM:マンバモデルにおける潜在トークン間相互作用の測定
- Authors: Hugo Pitorro, Marcos Treviso,
- Abstract要約: 状態空間モデル(SSM)は、長文シーケンスモデリングのための変換器の効率的な代替品として登場した。
SSMには、注意に基づくアーキテクチャの理解と改善に不可欠であった解釈可能性ツールが欠けている。
我々は, 精密な解釈を可能にする, Mamba-1 と Mamba-2 のトークンレベル分解法である LaTIM を紹介する。
- 参考スコア(独自算出の注目度): 1.249658136570244
- License:
- Abstract: State space models (SSMs), such as Mamba, have emerged as an efficient alternative to transformers for long-context sequence modeling. However, despite their growing adoption, SSMs lack the interpretability tools that have been crucial for understanding and improving attention-based architectures. While recent efforts provide insights into Mamba's internal mechanisms, they do not explicitly decompose token-wise contributions, leaving gaps in understanding how Mamba selectively processes sequences across layers. In this work, we introduce LaTIM, a novel token-level decomposition method for both Mamba-1 and Mamba-2 that enables fine-grained interpretability. We extensively evaluate our method across diverse tasks, including machine translation, copying, and retrieval-based generation, demonstrating its effectiveness in revealing Mamba's token-to-token interaction patterns.
- Abstract(参考訳): Mambaのような状態空間モデル(SSM)は、長文シーケンスモデリングのための変換器の効率的な代替品として登場した。
しかし、SSMは採用が増えているにもかかわらず、注意に基づくアーキテクチャを理解し改善するために欠かせない解釈可能性ツールを欠いている。
最近の取り組みでは、Mambaの内部メカニズムに関する洞察を提供しているが、トークン的なコントリビューションを明示的に分解するわけではなく、Mambaが層をまたいだシーケンスをどのように選択的に処理するかを理解するためのギャップを残している。
本研究では,Mamba-1とMamba-2の両方のトークンレベル分解手法であるLaTIMを導入する。
本手法は,機械翻訳,複写,検索ベース生成など多種多様なタスクにまたがって広範に評価され,マンバのトークン・ツー・トークン相互作用パターンを明らかにする効果が示された。
関連論文リスト
- From Markov to Laplace: How Mamba In-Context Learns Markov Chains [36.22373318908893]
我々はマルコフ連鎖の文脈内学習について研究し、驚くべき現象を明らかにする。
トランスとは異なり、単層マンバでさえ、文脈内ラプラシアスムージング推定器を効率的に学習する。
これらの理論的な洞察は経験的な結果と強く一致し、マンバと最適統計推定器の間の最初の公式な関係を表す。
論文 参考訳(メタデータ) (2025-02-14T14:13:55Z) - Mamba-SEUNet: Mamba UNet for Monaural Speech Enhancement [54.427965535613886]
Mambaは、新しいステートスペースモデル(SSM)として、自然言語処理やコンピュータビジョンに広く応用されている。
本稿では,MambaとU-Net for SEタスクを統合する革新的なアーキテクチャであるMamba-SEUNetを紹介する。
論文 参考訳(メタデータ) (2024-12-21T13:43:51Z) - ReMamba: Equip Mamba with Effective Long-Sequence Modeling [50.530839868893786]
本研究では,長い文脈の理解能力を高めるReMambaを提案する。
ReMambaは2段階のプロセスで選択的圧縮と適応のテクニックを取り入れている。
論文 参考訳(メタデータ) (2024-08-28T02:47:27Z) - MambaMIM: Pre-training Mamba with State Space Token-interpolation [14.343466340528687]
選択構造状態空間補間(S6T)に基づくMamba(MambaMIM)の自己教師型学習手法を提案する。
MambaMIMは、Mambaの長距離表現能力を向上するために、任意の単一またはハイブリッドのMambaアーキテクチャで使用することができる。
論文 参考訳(メタデータ) (2024-08-15T10:35:26Z) - Venturing into Uncharted Waters: The Navigation Compass from Transformer to Mamba [77.21394300708172]
ディープニューラルネットワークアーキテクチャであるTransformerは、長年、自然言語処理などの分野を支配してきた。
マンバの最近の導入は、その優位性に挑戦し、研究者の間でかなりの関心を喚起し、マンバをベースとした一連のモデルが顕著な可能性を示している。
本研究は,総合的な議論をまとめ,本質的な研究の側面に潜り込み,(1)構造的状態空間モデルの原理に基づくマンバ機構の機能とその基盤,(2)提案されたマンバの様々なネットワークへの統合,(3)トランスフォーマーの代替としての可能性を探る。
論文 参考訳(メタデータ) (2024-06-24T15:27:21Z) - Can Mamba Learn How to Learn? A Comparative Study on In-Context Learning Tasks [25.092302463435523]
状態空間モデル(SSM)は言語モデリングにおけるトランスフォーマーネットワークの代替として提案されている。
本研究では,各種タスクを対象としたトランスフォーマーモデルに対して,マンバに着目したSSMのICL性能を評価する。
論文 参考訳(メタデータ) (2024-02-06T18:56:35Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
GPT-4のような技術基盤モデルの現状は、文脈内学習(ICL)において驚くほどよく機能する
この研究は、新たに提案された状態空間モデルであるMambaが同様のICL能力を持つという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-02-05T16:39:12Z) - MambaByte: Token-free Selective State Space Model [71.90159903595514]
マンババイト(英: MambaByte)は、マンバSSMがバイト配列で自己回帰的に訓練したトークンレス適応である。
MambaByteは、言語モデリングタスクにおいて、最先端のサブワードトランスフォーマーよりも優れています。
論文 参考訳(メタデータ) (2024-01-24T18:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。