論文の概要: Regulating Multifunctionality
- arxiv url: http://arxiv.org/abs/2502.15715v1
- Date: Sun, 26 Jan 2025 00:50:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 20:17:19.7424
- Title: Regulating Multifunctionality
- Title(参考訳): 多機能性の制御
- Authors: Cary Coglianese, Colton R. Crum,
- Abstract要約: ファンデーションモデルと生成人工知能(AI)は、AIに関連する中核的な規制課題である不均一性を悪化させる。
規範的でワンサイズなすべての規制は、実行可能な選択肢にはならない。
パフォーマンス標準やポスト責任でさえ、多機能AIのリスクに対応するための強力な候補になる可能性は低い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Foundation models and generative artificial intelligence (AI) exacerbate a core regulatory challenge associated with AI: its heterogeneity. By their very nature, foundation models and generative AI can perform multiple functions for their users, thus presenting a vast array of different risks. This multifunctionality means that prescriptive, one-size-fits-all regulation will not be a viable option. Even performance standards and ex post liability - regulatory approaches that usually afford flexibility - are unlikely to be strong candidates for responding to multifunctional AI's risks, given challenges in monitoring and enforcement. Regulators will do well instead to promote proactive risk management on the part of developers and users by using management-based regulation, an approach that has proven effective in other contexts of heterogeneity. Regulators will also need to maintain ongoing vigilance and agility. More than in other contexts, regulators of multifunctional AI will need sufficient resources, top human talent and leadership, and organizational cultures committed to regulatory excellence.
- Abstract(参考訳): ファンデーションモデルと生成人工知能(AI)は、AIに関連する中核的な規制課題である不均一性を悪化させる。
その性質上、ファンデーションモデルと生成AIは、ユーザのために複数の機能を実行することができるため、さまざまなリスクが生じる。
この多機能性は、規範的でワンサイズなすべての規制が実行可能な選択肢にならないことを意味する。
監視と実施の課題を考えると、パフォーマンス標準や外部責任 — 通常は柔軟性を持つ規制アプローチ — でさえ、多機能AIのリスクに対応するための強力な候補になる可能性は低い。
レギュレータは、管理ベースの規制を用いることで、開発者やユーザの積極的なリスク管理を促進するために、代わりにうまく機能します。
レギュレータは、継続的な警戒と機敏さも維持する必要がある。
他の状況よりも、多機能AIの規制当局には十分なリソース、優れた人材とリーダーシップ、規制の卓越にコミットする組織文化が必要です。
関連論文リスト
- Do LLMs trust AI regulation? Emerging behaviour of game-theoretic LLM agents [61.132523071109354]
本稿では、異なる規制シナリオ下での戦略選択をモデル化する、AI開発者、規制当局、ユーザ間の相互作用について検討する。
我々の研究は、純粋なゲーム理論エージェントよりも「悲観的」な姿勢を採用する傾向にある戦略的AIエージェントの出現する振る舞いを特定する。
論文 参考訳(メタデータ) (2025-04-11T15:41:21Z) - Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models [75.4890331763196]
大規模言語モデル(LLM)の最近のブレークスルーは、エージェントAIシステムの出現につながっている。
LLMベースのAgentic RS(LLM-ARS)は、よりインタラクティブで、コンテキストを認識し、プロアクティブなレコメンデーションを提供する。
論文 参考訳(メタデータ) (2025-03-20T22:37:15Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
本稿では,信頼できるAIシステムを育成する上での,AI開発者,規制当局,ユーザ,メディア間の相互作用について検討する。
進化的ゲーム理論と大言語モデル(LLM)を用いて、異なる規制体制下でこれらのアクター間の戦略的相互作用をモデル化する。
論文 参考訳(メタデータ) (2025-03-12T21:39:38Z) - Decentralized Governance of Autonomous AI Agents [0.0]
ETHOSは、ブロックチェーン、スマートコントラクト、分散自律組織(DAO)など、Web3テクノロジを活用する分散ガバナンス(DeGov)モデルである。
AIエージェントのグローバルレジストリを確立し、動的リスク分類、比例監視、自動コンプライアンス監視を可能にする。
合理性、倫理的根拠、ゴールアライメントの哲学的原則を統合することで、ETHOSは信頼、透明性、参加的ガバナンスを促進するための堅牢な研究アジェンダを作ることを目指している。
論文 参考訳(メタデータ) (2024-12-22T18:01:49Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - From Principles to Rules: A Regulatory Approach for Frontier AI [2.1764247401772705]
レギュレータは、フロンティアAI開発者に安全対策を適用するよう要求する。
要件は、ハイレベルな原則や特定のルールとして定式化できる。
これらの規制アプローチは「原則ベース」および「ルールベース」規制と呼ばれ、補完的な強みと弱みを持っている。
論文 参考訳(メタデータ) (2024-07-10T01:45:15Z) - Generative AI Needs Adaptive Governance [0.0]
ジェネレーティブAIは、ガバナンス、信頼、ヒューマンエージェンシーの概念に挑戦する。
本稿では,ジェネレーティブAIが適応的ガバナンスを求めていることを論じる。
我々は、アクター、ロール、および共有およびアクター固有のポリシー活動の概要を概説する。
論文 参考訳(メタデータ) (2024-06-06T23:47:14Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Generative AI(Gen AI)の応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の変化の可能性は、この技術の潜在的なリスクについて活発に議論を巻き起こし、より厳格な規制を要求した。
この規制は、オープンソースの生成AIの誕生する分野を危険にさらす可能性がある。
論文 参考訳(メタデータ) (2024-05-14T13:37:36Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Frontier AI Regulation: Managing Emerging Risks to Public Safety [15.85618115026625]
脆弱なAI」モデルは、公共の安全に深刻なリスクをもたらすのに十分な危険能力を持つ可能性がある。
業界の自己規制は重要な第一歩です。
安全基準の最初のセットを提案する。
論文 参考訳(メタデータ) (2023-07-06T17:03:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。