Self-Supervised Transformers as Iterative Solution Improvers for Constraint Satisfaction
- URL: http://arxiv.org/abs/2502.15794v1
- Date: Tue, 18 Feb 2025 16:51:01 GMT
- Title: Self-Supervised Transformers as Iterative Solution Improvers for Constraint Satisfaction
- Authors: Yudong W. Xu, Wenhao Li, Scott Sanner, Elias B. Khalil,
- Abstract summary: We present a Transformer-based framework for Constraint Satisfaction Problems (CSPs)<n>CSPs find use in many applications and thus accelerating their solution with machine learning is of wide interest.<n>We propose ConsFormer, a self-supervised framework that leverages a Transformer as a solution refiner.
- Score: 44.67050228129961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a Transformer-based framework for Constraint Satisfaction Problems (CSPs). CSPs find use in many applications and thus accelerating their solution with machine learning is of wide interest. Most existing approaches rely on supervised learning from feasible solutions or reinforcement learning, paradigms that require either feasible solutions to these NP-Complete CSPs or large training budgets and a complex expert-designed reward signal. To address these challenges, we propose ConsFormer, a self-supervised framework that leverages a Transformer as a solution refiner. ConsFormer constructs a solution to a CSP iteratively in a process that mimics local search. Instead of using feasible solutions as labeled data, we devise differentiable approximations to the discrete constraints of a CSP to guide model training. Our model is trained to improve random assignments for a single step but is deployed iteratively at test time, circumventing the bottlenecks of supervised and reinforcement learning. Our method can tackle out-of-distribution CSPs simply through additional iterations.
Related papers
- Adversarial Generative Flow Network for Solving Vehicle Routing Problems [29.954688883643538]
We introduce a novel framework beyond Transformer-based approaches, i.e., Adversarial Generative Flow Networks (AGFN)
AGFN integrates the generative flow network (GFlowNet)-a probabilistic model inherently adept at generating diverse solutions (routes)
We apply the AGFN framework to solve the capacitated vehicle routing problem (CVRP) and travelling salesman problem (TSP)
arXiv Detail & Related papers (2025-03-03T03:06:56Z) - Instance-Conditioned Adaptation for Large-scale Generalization of Neural Combinatorial Optimization [15.842155380912002]
This work proposes a novel Instance-Conditioned Adaptation Model (ICAM) for better large-scale generalization of neural optimization.
In particular, we design a powerful yet lightweight instance-conditioned Routing adaptation module for the NCO model.
We develop an efficient three-stage reinforcement learning-based training scheme that enables the model to learn cross-scale features without any labeled optimal solution.
arXiv Detail & Related papers (2024-05-03T08:00:19Z) - Self-Labeling the Job Shop Scheduling Problem [15.723699332053558]
We show that generative models can be trained by sampling multiple solutions and using the best one according to the problem objective as a pseudo-label.
We prove the robustness of SLIM to various parameters and its generality by applying it to the Traveling Salesman Problem.
arXiv Detail & Related papers (2024-01-22T11:08:36Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
Combinatorial optimization (CO) problems are often NP-hard and out of reach for exact algorithms.
GFlowNets have emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially.
In this paper, we design Markov decision processes (MDPs) for different problems and propose to train conditional GFlowNets to sample from the solution space.
arXiv Detail & Related papers (2023-05-26T15:13:09Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
This paper presents a new reinforcement learning approach that is based on entropy.
In addition, we design an off-policy-based reinforcement learning technique that maximises the expected return.
We show that our model can generalise to various route problems.
arXiv Detail & Related papers (2022-05-31T09:51:48Z) - Reversible Action Design for Combinatorial Optimization with
Reinforcement Learning [35.50454156611722]
Reinforcement learning (RL) has recently emerged as a new framework to tackle these problems.
We propose a general RL framework that not only exhibits state-of-the-art empirical performance but also generalizes to a variety class of COPs.
arXiv Detail & Related papers (2021-02-14T18:05:42Z) - Learning to Optimise General TSP Instances [2.6782615615913348]
The Travelling Salesman Problem (TSP) is a classical optimisation problem.
Deep learning has been successfully extended to meta-learning, where previous solving efforts assist in learning how to optimise future instances.
This paper introduces a new learning-based approach to solve a variety of different and common TSP problems.
arXiv Detail & Related papers (2020-10-23T07:37:16Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.