論文の概要: A non-parametric optimal design algorithm for population pharmacokinetics
- arxiv url: http://arxiv.org/abs/2502.15848v1
- Date: Thu, 20 Feb 2025 23:32:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:56:21.463436
- Title: A non-parametric optimal design algorithm for population pharmacokinetics
- Title(参考訳): 人口動態学のための非パラメトリック最適設計アルゴリズム
- Authors: Markus Hovd, Alona Kryshchenko, Michael N. Neely, Julian Otalvaro, Alan Schumitzky, Walter M. Yamada,
- Abstract要約: 本稿では,モデルパラメータの結合分布を推定する非パラメトリック推定アルゴリズムを提案する。
NPODアルゴリズムは2つのデータセットにまたがるNPAGに類似した解を実現するが、必要なサイクル数と全体の実行時間の両方において、より効率的であることを示す。
- 参考スコア(独自算出の注目度): 0.017992352397675153
- License:
- Abstract: This paper introduces a non-parametric estimation algorithm designed to effectively estimate the joint distribution of model parameters with application to population pharmacokinetics. Our research group has previously developed the non-parametric adaptive grid (NPAG) algorithm, which while accurate, explores parameter space using an ad-hoc method to suggest new support points. In contrast, the non-parametric optimal design (NPOD) algorithm uses a gradient approach to suggest new support points, which reduces the amount of time spent evaluating non-relevant points and by this the overall number of cycles required to reach convergence. In this paper, we demonstrate that the NPOD algorithm achieves similar solutions to NPAG across two datasets, while being significantly more efficient in both the number of cycles required and overall runtime. Given the importance of developing robust and efficient algorithms for determining drug doses quickly in pharmacokinetics, the NPOD algorithm represents a valuable advancement in non-parametric modeling. Further analysis is needed to determine which algorithm performs better under specific conditions.
- Abstract(参考訳): 本稿では,モデルパラメータの結合分布を効果的に推定する非パラメトリック推定アルゴリズムを提案する。
我々の研究グループは以前、非パラメトリック適応グリッド(NPAG)アルゴリズムを開発しており、これは正確ではあるが、新しいサポートポイントを提案するためにアドホック法を用いてパラメータ空間を探索している。
対照的に、非パラメトリック最適設計(NPOD)アルゴリズムは、新しいサポートポイントを提案するために勾配法を用いており、非関連点の評価に要する時間を削減し、収束に要するサイクルの総数を削減する。
本稿では,NPODアルゴリズムが2つのデータセットにまたがるNPAGに類似した解を実現できることを示した。
薬物動態学において薬物投与量を決定するための堅牢で効率的なアルゴリズムを開発することの重要性を考えると、NPODアルゴリズムは非パラメトリックモデリングにおいて重要な進歩である。
特定の条件下でどのアルゴリズムがより良く動作するかを決定するには、さらなる分析が必要である。
関連論文リスト
- Application of Quantum Approximate Optimization Algorithm in Solving the Total Domination Problem [0.5266869303483376]
総合支配問題(TDP)はこの分野における古典的かつ批判的な事例である。
量子コンピューティングの最近の進歩は、最適化問題に量子アルゴリズムを適用することに大きな研究をもたらした。
本稿では,量子近似最適化アルゴリズム(QAOA)の先駆的応用について述べる。
論文 参考訳(メタデータ) (2024-11-01T05:05:14Z) - Deep Unrolling for Nonconvex Robust Principal Component Analysis [75.32013242448151]
我々はロバスト成分分析のためのアルゴリズムを設計する(A)
行列を低主行列とスパース主行列の和に分解する。
論文 参考訳(メタデータ) (2023-07-12T03:48:26Z) - Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
古典的なSGDフレームワークにおける適応的なステップ長選択のための新しいアルゴリズムを提案する。
妥当な条件下では、アルゴリズムは十分に確立された理論的な要件に従ってステップ長を生成する。
このアルゴリズムは,手動チューニングから得られる最良ステップ長に匹敵するステップ長を生成することができることを示す。
論文 参考訳(メタデータ) (2023-05-17T06:22:11Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
一般化された複合ミラー降下アルゴリズムの一群を提案し,解析する。
適応的なステップサイズでは、提案アルゴリズムは問題の事前知識を必要とせずに収束する。
決定集合の低次元構造を高次元問題に活用する。
論文 参考訳(メタデータ) (2022-11-21T18:31:43Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Optimizing the Parameters of A Physical Exercise Dose-Response Model: An
Algorithmic Comparison [1.0152838128195467]
本研究の目的は,運動生理学の分野で用いられる一般的な非線形線量応答モデルのパラメータを適合させるタスクを与えられたとき,局所的および大域的最適化アルゴリズムの堅牢性と性能を比較することである。
また,1000回以上の実験結果から,局所探索アルゴリズムと比較してモデル適合性とホールドアウト性能が向上することを示す。
論文 参考訳(メタデータ) (2020-12-16T22:06:35Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
トポロジ最適化に基づくAI支援設計手法を提示し、最適化された設計を直接的に得ることができる。
設計は、境界条件と入力データとしての充填度に基づいて、人工ニューラルネットワーク、予測器によって提供される。
論文 参考訳(メタデータ) (2020-12-11T14:33:27Z) - Determinantal Point Processes in Randomized Numerical Linear Algebra [80.27102478796613]
数値線形代数(RandNLA)は、科学計算、データサイエンス、機械学習などで発生する行列問題に対する改良されたアルゴリズムを開発するためにランダム性を使用する。
最近の研究により、DPPとRandNLAの間の深い実りある関係が明らかになり、新たな保証とアルゴリズムの改善につながった。
論文 参考訳(メタデータ) (2020-05-07T00:39:52Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z) - Boosting Algorithms for Estimating Optimal Individualized Treatment
Rules [4.898659895355356]
最適な個別化処理規則を推定するための非パラメトリックアルゴリズムを提案する。
提案アルゴリズムは機械学習文学において最も強力なアルゴリズムの1つであるXGBoostアルゴリズムに基づいている。
論文 参考訳(メタデータ) (2020-01-31T22:26:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。