論文の概要: Generative AI Training and Copyright Law
- arxiv url: http://arxiv.org/abs/2502.15858v1
- Date: Fri, 21 Feb 2025 08:45:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:59:42.640609
- Title: Generative AI Training and Copyright Law
- Title(参考訳): ジェネレーティブAIトレーニングと著作権法
- Authors: Tim W. Dornis, Sebastian Stober,
- Abstract要約: 生成AIモデルのトレーニングには大量のデータが必要である。
一般的な慣行は、ウェブスクレイピングを通じてそのようなデータを収集することである。しかしながら、収集されたものの多くは著作権で保護されている。
米国では、AI開発者は"フェアユース"に依存しており、ヨーロッパでは、"テキストとデータマイニング"(TDM)の例外が適用されるという見解が一般的である。
- 参考スコア(独自算出の注目度): 0.1074267520911262
- License:
- Abstract: Training generative AI models requires extensive amounts of data. A common practice is to collect such data through web scraping. Yet, much of what has been and is collected is copyright protected. Its use may be copyright infringement. In the USA, AI developers rely on "fair use" and in Europe, the prevailing view is that the exception for "Text and Data Mining" (TDM) applies. In a recent interdisciplinary tandem-study, we have argued in detail that this is actually not the case because generative AI training fundamentally differs from TDM. In this article, we share our main findings and the implications for both public and corporate research on generative models. We further discuss how the phenomenon of training data memorization leads to copyright issues independently from the "fair use" and TDM exceptions. Finally, we outline how the ISMIR could contribute to the ongoing discussion about fair practices with respect to generative AI that satisfy all stakeholders.
- Abstract(参考訳): 生成AIモデルのトレーニングには大量のデータが必要である。
一般的なプラクティスは、Webスクレイピングを通じてそのようなデータを収集することです。
しかし、収集されているものの多くは著作権が保護されている。
その使用は著作権侵害かもしれない。
米国では、AI開発者は"フェアユース"に依存しており、ヨーロッパでは、"テキストとデータマイニング"(TDM)の例外が適用されるという見解が一般的である。
最近の学際的タンデムスタディでは、生成的AIトレーニングがTDMと根本的に異なるため、実際にはそうではないと詳細に論じている。
本稿では, 生産モデルに関する公益研究と企業研究の両面において, 本研究の主な成果と意義について紹介する。
さらに、トレーニングデータ記憶の現象が「フェアユース」や「TDM」の例外とは無関係に著作権問題を引き起こすかについても論じる。
最後に、ISMIRが、すべての利害関係者を満たす生成AIに関して、フェアプラクティスに関する継続的な議論にどのように貢献するかを概説する。
関連論文リスト
- Towards Best Practices for Open Datasets for LLM Training [21.448011162803866]
多くのAI企業は、著作権所有者の許可なく、データ上で大きな言語モデル(LLM)をトレーニングしています。
創造的なプロデューサーは、いくつかの著名な著作権訴訟を引き起こした。
データ情報を制限するこの傾向は、透明性、説明責任、革新を妨げることによって害をもたらす。
論文 参考訳(メタデータ) (2025-01-14T17:18:05Z) - An Economic Solution to Copyright Challenges of Generative AI [35.37023083413299]
生成人工知能システムは、新しいテキスト、画像、ビデオ、その他のメディアを生成するために訓練されている。
このようなシステムは、データコントリビュータのトレーニングに関する著作権権に侵害されるのではないか、という懸念が高まっている。
本稿では,AI生成コンテンツ作成への貢献に比例して著作権所有者を補償する枠組みを提案する。
論文 参考訳(メタデータ) (2024-04-22T08:10:38Z) - Generative AI and Copyright: A Dynamic Perspective [0.0]
ジェネレーティブAIは、クリエイティブ産業をディスラプトしようとしている。
コンテンツが生成的AIモデル(フェアユース標準)のトレーニングに使用されているクリエーターへの補償と、著作権保護(AI-コピーライトビリティ)のためのAI生成コンテンツの適性は重要な問題である。
本稿では、これらの2つの規制問題とその相互作用の経済的意味をよりよく理解することを目的とする。
論文 参考訳(メタデータ) (2024-02-27T07:12:48Z) - Copyright Protection in Generative AI: A Technical Perspective [58.84343394349887]
ジェネレーティブAIは近年急速に進歩し、テキスト、画像、オーディオ、コードなどの合成コンテンツを作成する能力を拡大している。
これらのディープ・ジェネレーティブ・モデル(DGM)が生成したコンテンツの忠実さと信頼性が、著作権の重大な懸念を引き起こしている。
この研究は、技術的観点から著作権保護の包括的概要を提供することで、この問題を深く掘り下げている。
論文 参考訳(メタデータ) (2024-02-04T04:00:33Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
著作権法は、クリエイティブ作品を再生、配布、収益化する排他的権利をクリエイターに与えている。
テキスト・ツー・イメージ・ジェネレーションの最近の進歩は、著作権の執行に重大な課題をもたらしている。
CLIP、ChatGPT、拡散モデルを調和させてデータセットをキュレートする新しいパイプラインを導入する。
論文 参考訳(メタデータ) (2024-01-04T11:14:01Z) - Training Is Everything: Artificial Intelligence, Copyright, and Fair
Training [9.653656920225858]
著者: そうしたコンテンツを使ってAIエンジンをトレーニングしている企業は、そのような使用は「フェアユース」であるべきだと信じていることが多い。
著作者: 著作権所有者は、その支持者とともに、著作権のある著作物をAIのトレーニングセットに組み入れ、所有者の知的財産の誤った評価を構成することを検討する。
我々はこの議論の両側で強い議論と刺激的な議論の両方を識別する。
論文 参考訳(メタデータ) (2023-05-04T04:01:00Z) - Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI
Collaboration in Data Storytelling [59.08591308749448]
業界と学界の18人のデータワーカーにインタビューして、AIとのコラボレーションの場所と方法を聞いた。
驚いたことに、参加者はAIとのコラボレーションに興奮を見せたが、彼らの多くは反感を表明し、曖昧な理由を指摘した。
論文 参考訳(メタデータ) (2023-04-17T15:30:05Z) - Foundation Models and Fair Use [96.04664748698103]
米国や他の国では、著作権のあるコンテンツは、公正な使用原理のために責任を負わずに基礎モデルを構築するために使われることがある。
本研究では,著作権コンテンツに基づく基礎モデルの開発と展開の潜在的なリスクについて調査する。
基礎モデルが公正な使用と一致し続けるのに役立つ技術的緩和について論じる。
論文 参考訳(メタデータ) (2023-03-28T03:58:40Z) - Should Machine Learning Models Report to Us When They Are Clueless? [0.0]
我々は、AIモデルは、慣れ親しんだデータの範囲外を誇張していると報告する。
モデルを外挿したかどうかを知ることは、AIモデルの説明に含めるべき基本的な洞察である。
論文 参考訳(メタデータ) (2022-03-23T01:50:24Z) - Representative & Fair Synthetic Data [68.8204255655161]
公平性制約を自己監督学習プロセスに組み込むためのフレームワークを提示する。
私たちはuci成人国勢調査データセットの代表者および公正版を作成します。
我々は、代表的かつ公正な合成データを将来有望なビルディングブロックとみなし、歴史的世界ではなく、私たちが生きようとしている世界についてアルゴリズムを教える。
論文 参考訳(メタデータ) (2021-04-07T09:19:46Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
我々は、訓練されたモデル間で知識を共有することができる、完全に分散化されたアプローチを提案する。
生徒は、合成された入力データを通じて教師の出力を訓練する。
その結果,教師が学習した未学習学生モデルが,教師と同等のF1スコアに達することがわかった。
論文 参考訳(メタデータ) (2021-02-01T14:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。