論文の概要: Could AI Trace and Explain the Origins of AI-Generated Images and Text?
- arxiv url: http://arxiv.org/abs/2504.04279v2
- Date: Thu, 10 Apr 2025 19:50:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:16:32.185158
- Title: Could AI Trace and Explain the Origins of AI-Generated Images and Text?
- Title(参考訳): AIは、AI生成画像とテキストの起源を追跡、説明できるか?
- Authors: Hongchao Fang, Yixin Liu, Jiangshu Du, Can Qin, Ran Xu, Feng Liu, Lichao Sun, Dongwon Lee, Lifu Huang, Wenpeng Yin,
- Abstract要約: AI生成コンテンツは、現実の世界ではますます普及している。
敵は、大規模なマルチモーダルモデルを利用して、倫理的または法的基準に違反した画像を作成するかもしれない。
ペーパーレビュアーは、大きな言語モデルを誤用して、真の知的努力なしにレビューを生成する。
- 参考スコア(独自算出の注目度): 53.11173194293537
- License:
- Abstract: AI-generated content is becoming increasingly prevalent in the real world, leading to serious ethical and societal concerns. For instance, adversaries might exploit large multimodal models (LMMs) to create images that violate ethical or legal standards, while paper reviewers may misuse large language models (LLMs) to generate reviews without genuine intellectual effort. While prior work has explored detecting AI-generated images and texts, and occasionally tracing their source models, there is a lack of a systematic and fine-grained comparative study. Important dimensions--such as AI-generated images vs. text, fully vs. partially AI-generated images, and general vs. malicious use cases--remain underexplored. Furthermore, whether AI systems like GPT-4o can explain why certain forged content is attributed to specific generative models is still an open question, with no existing benchmark addressing this. To fill this gap, we introduce AI-FAKER, a comprehensive multimodal dataset with over 280,000 samples spanning multiple LLMs and LMMs, covering both general and malicious use cases for AI-generated images and texts. Our experiments reveal two key findings: (i) AI authorship detection depends not only on the generated output but also on the model's original training intent; and (ii) GPT-4o provides highly consistent but less specific explanations when analyzing content produced by OpenAI's own models, such as DALL-E and GPT-4o itself.
- Abstract(参考訳): AIが生成するコンテンツは、現実世界でますます普及し、深刻な倫理的・社会的懸念につながっている。
例えば、敵は大きなマルチモーダルモデル(LMM)を利用して倫理的または法的基準に反する画像を作成する一方、論文評論者は大きな言語モデル(LLM)を誤用し、真の知的努力なしにレビューを生成する。
以前の研究では、AIが生成した画像やテキストを検出し、時にはソースモデルをトレースする研究が行われてきたが、体系的できめ細かい比較研究が欠如している。
AI生成画像とテキスト、完全対AI生成画像、一般対悪意のあるユースケースといった重要な次元は、未解決のまま残っています。
さらに、GPT-4oのようなAIシステムが、ある偽コンテンツが特定の生成モデルに起因する理由を説明できるかどうかは、まだ未解決の問題であり、これに対処する既存のベンチマークは存在しない。
このギャップを埋めるために、複数のLLMとLMMにまたがる280,000以上のサンプルを備えた総合マルチモーダルデータセットであるAI-FAKERを導入する。
私たちの実験では2つの重要な発見がありました。
i)AIオーサシップ検出は,生成した出力だけでなく,モデルの本来のトレーニング意図にも依存する。
(ii) GPT-4oは、DALL-EやGPT-4oなど、OpenAI自身のモデルで作成されたコンテンツを分析する際に、非常に一貫性があるが、具体的でない説明を提供する。
関連論文リスト
- DejAIvu: Identifying and Explaining AI Art on the Web in Real-Time with Saliency Maps [0.0]
DejAIvuは、リアルタイムAI生成画像検出と唾液度に基づく説明性を組み合わせたChrome Webエクステンションである。
当社のアプローチでは、効率的なブラウザ内推論、勾配に基づく唾液度分析、シームレスなユーザエクスペリエンスを統合し、AI検出が透過的かつ解釈可能であることを保証しています。
論文 参考訳(メタデータ) (2025-02-12T22:24:49Z) - D-Judge: How Far Are We? Evaluating the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance [19.760989919485894]
AI-Natural Image Discrepancy accessing benchmark(textitD-Judge)を導入する。
我々は、テキスト・トゥ・イメージ(T2I)、画像・トゥ・イメージ(I2I)、テキスト・アンド・イメージ(TI2I)プロンプトを用いて、5000の自然画像と4万以上のAIGIを9つのモデルで生成したデータセットであるtextitD-ANIを構築した。
本フレームワークは, 画像品質, セマンティックアライメント, 美的魅力, 下流適用性, 人間の検証の5次元にわたる相違性を評価する。
論文 参考訳(メタデータ) (2024-12-23T15:08:08Z) - Human vs. AI: A Novel Benchmark and a Comparative Study on the Detection of Generated Images and the Impact of Prompts [5.222694057785324]
本研究は,偽画像の検出性に対するプロンプトの細部レベルの影響について検討する。
私たちはCOCOデータセットの実際の写真とSDXLとFooocusで生成された画像からなる新しいデータセットCOCOXGENを作成します。
200人の被験者を対象に行ったユーザスタディでは,より長く,より詳細なプロンプトで生成された画像は,短いプロンプトで生成された画像よりもはるかに容易に検出できることが示されている。
論文 参考訳(メタデータ) (2024-12-12T20:37:52Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
AI生成画像を検出するゼロショットエントロピー検出器(ZED)を提案する。
機械によるテキスト検出の最近の研究に触発された私たちのアイデアは、分析対象の画像が実際の画像のモデルと比較してどれだけ驚くかを測定することである。
ZEDは精度の点でSoTAよりも平均3%以上改善されている。
論文 参考訳(メタデータ) (2024-09-24T08:46:13Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
我々はAI生成画像を検出するAI生成画像検出装置(AI生成画像検出装置)を提案する。
AIDEは最先端の手法を+3.5%、+4.6%改善した。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - The Adversarial AI-Art: Understanding, Generation, Detection, and Benchmarking [47.08666835021915]
本稿では,AI生成画像(AI-art)を敵のシナリオで理解し,検出するための体系的な試みを提案する。
ARIAという名前のデータセットには、アートワーク(絵画)、ソーシャルメディアイメージ、ニュース写真、災害シーン、アニメ画像の5つのカテゴリに140万以上の画像が含まれている。
論文 参考訳(メタデータ) (2024-04-22T21:00:13Z) - Psittacines of Innovation? Assessing the True Novelty of AI Creations [0.26107298043931204]
我々は、仮説的なクラウドファンディングキャンペーンのために、AIにプロジェクトタイトルの生成を任せる。
AI生成したプロジェクトタイトルで比較し、繰り返しと複雑さを測定します。
結果は、タスクの複雑さが増大しても、AIがユニークなコンテンツを生成することを示唆している。
論文 参考訳(メタデータ) (2024-03-17T13:08:11Z) - Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images [67.18010640829682]
我々は,AI生成画像がテキスト画像検索モデルに目に見えない関連性バイアスをもたらすことを示す。
検索モデルのトレーニングデータにAI生成画像を含めると、目に見えない関連性バイアスが増す。
本研究では,目に見えない関連バイアスを軽減するための効果的なトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T16:22:58Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images [66.20578637253831]
人工知能(AI)技術の進歩が偽写真を生み出すのではないかという懸念が高まっている。
本研究の目的は、最先端のAI生成視覚コンテンツを識別するためのエージェントを包括的に評価することである。
論文 参考訳(メタデータ) (2023-04-25T17:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。