Making Sense of AI Limitations: How Individual Perceptions Shape Organizational Readiness for AI Adoption
- URL: http://arxiv.org/abs/2502.15870v1
- Date: Fri, 21 Feb 2025 18:31:08 GMT
- Title: Making Sense of AI Limitations: How Individual Perceptions Shape Organizational Readiness for AI Adoption
- Authors: Thomas Übellacker,
- Abstract summary: This study investigates how individuals' perceptions of artificial intelligence (AI) limitations influence organizational readiness for AI adoption.<n>The research reveals that organizational readiness emerges through dynamic interactions between individual sensemaking, social learning, and formal integration processes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates how individuals' perceptions of artificial intelligence (AI) limitations influence organizational readiness for AI adoption. Through semi-structured interviews with seven AI implementation experts, analyzed using the Gioia methodology, the research reveals that organizational readiness emerges through dynamic interactions between individual sensemaking, social learning, and formal integration processes. The findings demonstrate that hands-on experience with AI limitations leads to more realistic expectations and increased trust, mainly when supported by peer networks and champion systems. Organizations that successfully translate these individual and collective insights into formal governance structures achieve more sustainable AI adoption. The study advances theory by showing how organizational readiness for AI adoption evolves through continuous cycles of individual understanding, social learning, and organizational adaptation. These insights suggest that organizations should approach AI adoption not as a one-time implementation but as an ongoing strategic learning process that balances innovation with practical constraints. The research contributes to organizational readiness theory and practice by illuminating how micro-level perceptions and experiences shape macro-level adoption outcomes.
Related papers
- Perceptions of Agentic AI in Organizations: Implications for Responsible AI and ROI [0.0]
This paper investigates how organizations perceive and adapt such frameworks amidst the emerging landscape of agentic AI.
Findings highlight that the inherent complexity of agentic AI systems and their responsible implementation, rooted in the intricate interconnectedness of responsible AI dimensions and the thematic framework, contribute to significant challenges in organizational adaptation.
arXiv Detail & Related papers (2025-04-15T19:15:06Z) - Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
We argue that the efforts aiming to study AI's ethical ramifications should be made in tandem with those evaluating its impacts on the environment.
We propose best practices to better integrate AI ethics and sustainability in AI research and practice.
arXiv Detail & Related papers (2025-04-01T13:53:11Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.
Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - What is Ethical: AIHED Driving Humans or Human-Driven AIHED? A Conceptual Framework enabling the Ethos of AI-driven Higher education [0.6216023343793144]
This study introduces the Human-Driven AI in Higher Education (HD-AIHED) Framework to ensure compliance with UNESCO and OECD ethical standards.
The study applies a participatory co-system, Phased Human Intelligence, SWOC analysis, and AI ethical review boards to assess AI readiness and governance strategies for universities and HE institutions.
arXiv Detail & Related papers (2025-02-07T11:13:31Z) - Human-Centered AI Transformation: Exploring Behavioral Dynamics in Software Engineering [6.126394204968227]
This study uses Behavioral Software Engineering as a lens to examine these often-overlooked dimensions of AI transformation.
Our findings reveal six key challenges tied to these BSE aspects that the organizations face during their AI transformation.
arXiv Detail & Related papers (2024-11-13T15:29:24Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - The Participatory Turn in AI Design: Theoretical Foundations and the
Current State of Practice [64.29355073494125]
This article aims to ground what we dub the "participatory turn" in AI design by synthesizing existing theoretical literature on participation.
We articulate empirical findings concerning the current state of participatory practice in AI design based on an analysis of recently published research and semi-structured interviews with 12 AI researchers and practitioners.
arXiv Detail & Related papers (2023-10-02T05:30:42Z) - Artificial intelligence in government: Concepts, standards, and a
unified framework [0.0]
Recent advances in artificial intelligence (AI) hold the promise of transforming government.
It is critical that new AI systems behave in alignment with the normative expectations of society.
arXiv Detail & Related papers (2022-10-31T10:57:20Z) - Putting AI Ethics into Practice: The Hourglass Model of Organizational
AI Governance [0.0]
We present an AI governance framework, which targets organizations that develop and use AI systems.
The framework is designed to help organizations deploying AI systems translate ethical AI principles into practice.
arXiv Detail & Related papers (2022-06-01T08:55:27Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Where Responsible AI meets Reality: Practitioner Perspectives on
Enablers for shifting Organizational Practices [3.119859292303396]
This paper examines and seeks to offer a framework for analyzing how organizational culture and structure impact the effectiveness of responsible AI initiatives in practice.
We present the results of semi-structured qualitative interviews with practitioners working in industry, investigating common challenges, ethical tensions, and effective enablers for responsible AI initiatives.
arXiv Detail & Related papers (2020-06-22T15:57:30Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.