論文の概要: IPAD: Inverse Prompt for AI Detection -- A Robust and Explainable LLM-Generated Text Detector
- arxiv url: http://arxiv.org/abs/2502.15902v2
- Date: Mon, 14 Jul 2025 08:34:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 20:53:35.02262
- Title: IPAD: Inverse Prompt for AI Detection -- A Robust and Explainable LLM-Generated Text Detector
- Title(参考訳): IPAD:AI検出のための逆プロンプト-ロバストで説明可能なLLM生成テキスト検出器
- Authors: Zheng Chen, Yushi Feng, Changyang He, Yue Deng, Hongxi Pu, Bo Li,
- Abstract要約: 大規模言語モデル (LLM) は、人間の書き起こしたテキストとLLM生成したテキストの区別を複雑にするテキスト生成において、人間レベルの流布を達成している。
既存の検出器は、オフ・オブ・ディストリビューション(OOD)データとアタックデータに弱いロバスト性を示す。
本稿では,入力テキストを生成可能な予測プロンプトを識別するPromptと,入力テキストが予測プロンプトと一致する確率を調べるDistinguisherからなる,新しいフレームワークであるIPADを提案する。
- 参考スコア(独自算出の注目度): 11.112793289424886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have attained human-level fluency in text generation, which complicates the distinction between human-written and LLM-generated texts. This increases the risk of misuse and highlights the need for reliable detectors. Yet, existing detectors exhibit poor robustness on out-of-distribution (OOD) data and attacked data, which is critical for real-world scenarios. Also, they struggle to provide interpretable evidence to support their decisions, thus undermining the reliability. In light of these challenges, we propose IPAD (Inverse Prompt for AI Detection), a novel framework consisting of a Prompt Inverter that identifies predicted prompts that could have generated the input text, and two Distinguishers that examine the probability that the input texts align with the predicted prompts. Empirical evaluations demonstrate that IPAD outperforms the strongest baselines by 9.05% (Average Recall) on in-distribution data, 12.93% (AUROC) on out-of-distribution (OOD) data, and 5.48% (AUROC) on attacked data. IPAD also performs robustly on structured datasets. Furthermore, an interpretability assessment is conducted to illustrate that IPAD enhances the AI detection trustworthiness by allowing users to directly examine the decision-making evidence, which provides interpretable support for its state-of-the-art detection results.
- Abstract(参考訳): 大規模言語モデル (LLM) は、人間の書き起こしたテキストとLLM生成したテキストの区別を複雑にするテキスト生成において、人間レベルの流布を達成している。
これにより誤用リスクが増大し、信頼性の高い検出器の必要性が強調される。
しかし、既存の検出器は、オフ・オブ・ディストリビューション(OOD)データと攻撃データに弱いロバスト性を示しており、これは現実世界のシナリオにとって重要なものである。
また、彼らの決定を支持するための解釈可能な証拠を提供するのに苦労し、それによって信頼性を損なう。
これらの課題を踏まえ、入力テキストを生成する可能性のある予測プロンプトを識別するPrompt Inverterと、入力テキストが予測プロンプトと一致する確率を調べる2つのDistinguisherからなる新しいフレームワークであるIPAD(Inverse Prompt for AI Detection)を提案する。
実験的な評価では、IPADは分布内データで9.05%(平均リコール)、アウト・オブ・ディストリビューション(OOD)データで12.93%(AUROC)、攻撃データで5.48%(AUROC)という最強のベースラインを上回っている。
IPADは構造化データセットでも堅牢に動作する。
さらに、IPADがAI検出信頼性を高めるために、ユーザが意思決定証拠を直接調べることにより、その最先端検出結果に対する解釈可能なサポートを提供する、解釈可能性評価を行う。
関連論文リスト
- Who Writes What: Unveiling the Impact of Author Roles on AI-generated Text Detection [44.05134959039957]
本稿では,社会言語学的属性・ジェンダー,CEFR習熟度,学術分野,言語環境に影響を及ぼすAIテキスト検出装置について検討する。
CEFRの習熟度と言語環境は一貫して検出器の精度に影響を与え,性別や学術分野は検出器に依存した効果を示した。
これらの発見は、特定の人口集団に不公平に罰を与えるのを避けるために、社会的に認識されたAIテキストの検出が不可欠であることを示している。
論文 参考訳(メタデータ) (2025-02-18T07:49:31Z) - ExaGPT: Example-Based Machine-Generated Text Detection for Human Interpretability [62.285407189502216]
LLM(Large Language Models)によって生成されたテキストの検出は、誤った判断によって致命的な誤りを引き起こす可能性がある。
本稿では,人間の意思決定プロセスに根ざした解釈可能な検出手法であるExaGPTを紹介する。
以上の結果から,ExaGPTは従来の強力な検出器よりも最大で40.9ポイントの精度を1%の偽陽性率で大きく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2025-02-17T01:15:07Z) - ESPERANTO: Evaluating Synthesized Phrases to Enhance Robustness in AI Detection for Text Origination [1.8418334324753884]
本稿では,検出を回避する新しい手法としてバックトランスレーションを紹介する。
本稿では、これらの裏書きされたテキストを組み合わせて、オリジナルのAI生成テキストの操作されたバージョンを生成するモデルを提案する。
我々は,この手法を,オープンソースと3つのプロプライエタリシステムを含む9つのAI検出器上で評価する。
論文 参考訳(メタデータ) (2024-09-22T01:13:22Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
我々は、新しいフレームワーク、パラフレーズテキストスパン検出(PTD)を提案する。
PTDは、テキスト内でパラフレーズ付きテキストを識別することを目的としている。
パラフレーズ付きテキストスパン検出のための専用データセットであるPASTEDを構築した。
論文 参考訳(メタデータ) (2024-05-21T11:22:27Z) - Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack [24.954755569786396]
そこで本研究では,機械生成コンテンツの小さな摂動を回避して検出を回避すべく,より広いレベルの敵攻撃のためのフレームワークを提案する。
我々は、ホワイトボックスとブラックボックスの2つの攻撃設定を検討し、現在の検出モデルのロバスト性を高める可能性を評価するために、動的シナリオにおける逆学習を採用する。
実験の結果、現在の検出モデルは10秒で妥協でき、機械が生成したテキストを人間の書き起こしコンテンツとして誤分類する結果となった。
論文 参考訳(メタデータ) (2024-04-02T12:49:22Z) - Hidding the Ghostwriters: An Adversarial Evaluation of AI-Generated
Student Essay Detection [29.433764586753956]
大規模言語モデル(LLM)は、テキスト生成タスクにおいて顕著な機能を示した。
これらのモデルの利用には、盗作行為、偽ニュースの普及、教育演習における問題など、固有のリスクが伴う。
本稿では,AI生成した学生エッセイデータセットであるAIG-ASAPを構築し,このギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2024-02-01T08:11:56Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - Watermarking Conditional Text Generation for AI Detection: Unveiling
Challenges and a Semantic-Aware Watermark Remedy [52.765898203824975]
本研究では,条件付きテキスト生成と入力コンテキストの特性を考慮した意味認識型透かしアルゴリズムを提案する。
実験結果から,提案手法は様々なテキスト生成モデルに対して大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2023-07-25T20:24:22Z) - OUTFOX: LLM-Generated Essay Detection Through In-Context Learning with
Adversarially Generated Examples [44.118047780553006]
OUTFOXは、LLM生成テキスト検出器の堅牢性を改善するフレームワークであり、検出器と攻撃者の両方が互いの出力を考慮できるようにする。
実験の結果,提案した検出器は攻撃者が生成したテキストの検出性能を最大41.3点F1スコアまで向上させることがわかった。
この検出器は最先端の検知性能を示し、96.9ポイントのF1スコアまで到達し、既存の検出器を非攻撃テキストで打ち負かした。
論文 参考訳(メタデータ) (2023-07-21T17:40:47Z) - RADAR: Robust AI-Text Detection via Adversarial Learning [69.5883095262619]
RADARはパラフラザーと検出器の対向訓練に基づいている。
パラフレーズの目標は、AIテキスト検出を避けるために現実的なコンテンツを生成することである。
RADARは検出器からのフィードバックを使ってパラフラザーを更新する。
論文 参考訳(メタデータ) (2023-07-07T21:13:27Z) - Red Teaming Language Model Detectors with Language Models [114.36392560711022]
大規模言語モデル(LLM)は、悪意のあるユーザによって悪用された場合、重大な安全性と倫理的リスクをもたらす。
近年,LLM生成テキストを検出し,LLMを保護するアルゴリズムが提案されている。
1) LLMの出力中の特定の単語を, 文脈が与えられたシノニムに置き換えること, 2) 生成者の書き方を変更するための指示プロンプトを自動で検索すること,である。
論文 参考訳(メタデータ) (2023-05-31T10:08:37Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z) - Can AI-Generated Text be Reliably Detected? [50.95804851595018]
大規模言語モデル(LLM)は、様々なアプリケーションで非常によく機能します。
盗作、偽ニュースの発生、スパムなどの活動においてこれらのモデルが誤用される可能性があることは、彼らの責任ある使用に対する懸念を引き起こしている。
我々は、攻撃者の存在下で、これらのAIテキスト検出装置の堅牢性を強調テストする。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。