論文の概要: Clinical Inspired MRI Lesion Segmentation
- arxiv url: http://arxiv.org/abs/2502.16032v1
- Date: Sat, 22 Feb 2025 01:37:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:57:46.773692
- Title: Clinical Inspired MRI Lesion Segmentation
- Title(参考訳): 臨床的に誘発されたMRI病変の分節化
- Authors: Lijun Yan, Churan Wang, Fangwei Zhong, Yizhou Wang,
- Abstract要約: 本稿では,MRI病変のセグメント化のサブシーケンス表現を学習するための残差融合法を提案する。
具体的には,複数解像度のコントラスト前列と後列の機能を反復的かつ適応的に融合する。
そこで本手法は,脳腫瘍セグメント化のためのBraTS2023データセットと,乳房病変セグメント化のための社内MRIデータセットの最先端性能を実現する。
- 参考スコア(独自算出の注目度): 18.265186077850874
- License:
- Abstract: Magnetic resonance imaging (MRI) is a potent diagnostic tool for detecting pathological tissues in various diseases. Different MRI sequences have different contrast mechanisms and sensitivities for different types of lesions, which pose challenges to accurate and consistent lesion segmentation. In clinical practice, radiologists commonly use the sub-sequence feature, i.e. the difference between post contrast-enhanced T1-weighted (post) and pre-contrast-enhanced (pre) sequences, to locate lesions. Inspired by this, we propose a residual fusion method to learn subsequence representation for MRI lesion segmentation. Specifically, we iteratively and adaptively fuse features from pre- and post-contrast sequences at multiple resolutions, using dynamic weights to achieve optimal fusion and address diverse lesion enhancement patterns. Our method achieves state-of-the-art performances on BraTS2023 dataset for brain tumor segmentation and our in-house breast MRI dataset for breast lesion segmentation. Our method is clinically inspired and has the potential to facilitate lesion segmentation in various applications.
- Abstract(参考訳): MRIは様々な疾患の病理組織を検出する強力な診断ツールである。
異なるMRIシーケンスは、異なる種類の病変に対して異なるコントラスト機構と感受性を持ち、正確で一貫した病変のセグメンテーションに困難をもたらす。
臨床実践では、放射線科医は、病変を見つけるために、通常、サブシーケンスの特徴、すなわち、コントラスト強化後T1強調後(ポスト)とコントラスト強化前(pre)配列の違いを使用する。
そこで本研究では,MRI損傷セグメント化のサブシーケンス表現を学習するための残差融合法を提案する。
具体的には、複数解像度のコントラスト前および後の特徴を反復的かつ適応的に融合させ、動的重みを使って最適な融合を実現し、多様な病変拡張パターンに対処する。
そこで本手法は,脳腫瘍セグメント化のためのBraTS2023データセットと,乳房病変セグメント化のための社内MRIデータセットの最先端性能を実現する。
本手法は臨床にインスパイアされ,様々な応用において病変の分節を促進する可能性がある。
関連論文リスト
- Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
自己教師型でMRI表現を効果的に学習するためのクロスシリーズ・マスキング(CSM)戦略
メソッドは、パブリックデータセットと社内データセットの両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-12-10T10:32:09Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn) [9.082208613256295]
本稿では,脳MR画像合成ベンチマーク(BraSyn)とMICCAI(Medical Image Computing and Computer-Assisted Intervention)2023を併用して,脳MR画像合成ベンチマーク(BraSyn)の確立について紹介する。
この課題の主な目的は、複数の利用可能な画像が提供される際に、MRIの欠落を現実的に生成できる画像合成手法を評価することである。
論文 参考訳(メタデータ) (2023-05-15T20:49:58Z) - Context-Aware Transformers For Spinal Cancer Detection and Radiological
Grading [70.04389979779195]
本稿では,脊椎分析に関わる医療画像問題に対するトランスフォーマーを用いた新しいモデルアーキテクチャを提案する。
MR画像におけるそのようなモデルの2つの応用について考察する: (a)脊椎転移の検出と脊椎骨折の関連状況と転移性脊髄圧迫。
画像中の脊椎のコンテキストを考慮することで,SCTは以前に公表したモデルと比較して,いくつかのグレーディングの精度を向上することを示す。
論文 参考訳(メタデータ) (2022-06-27T10:31:03Z) - Brain Cancer Survival Prediction on Treatment-na ive MRI using Deep
Anchor Attention Learning with Vision Transformer [4.630654643366308]
画像ベース脳腫瘍予測モデルによるMRIによるX線学的表現型の定量化
腫瘍内表現型不均一性の証拠にもかかわらず、MRIスキャンにおける異なるスライス間の空間的多様性は、そのような方法では比較的研究されていない。
本稿では,脳腫瘍患者の生存リスクを予測するために,ビジョントランスフォーマを用いたディープアンカーアテンションアグリゲーション戦略を提案する。
論文 参考訳(メタデータ) (2022-02-03T21:33:08Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Soft Tissue Sarcoma Co-Segmentation in Combined MRI and PET/CT Data [2.2515303891664358]
マルチモーダル医用画像における腫瘍のセグメンテーションは, 深層学習の手法に傾きつつある。
本稿では,モダリティ固有のエンコーダとデコーダのブランチによるマルチモーダル特徴学習を実現する,同時分離手法を提案する。
MRI(T1およびT2配列)とPET/CTスキャンを併用した公衆軟部肉腫データに対するアプローチの有効性を示した。
論文 参考訳(メタデータ) (2020-08-28T09:15:42Z) - Spinal Metastases Segmentation in MR Imaging using Deep Convolutional
Neural Networks [0.0]
本研究の目的は,深層学習を用いた診断MR画像における脊髄転移の分節化である。
U-Net様アーキテクチャを用いて40例の臨床検査を行った。
専門的な注釈付き病変のセグメンテーションと比較すると、Diceの平均スコアは77.6%、平均感度は78.9%という有望な結果を得た。
論文 参考訳(メタデータ) (2020-01-08T10:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。