Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids
- URL: http://arxiv.org/abs/2412.06255v1
- Date: Mon, 09 Dec 2024 07:07:17 GMT
- Title: Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids
- Authors: Omer Sen, Bozhidar Ivanov, Christian Kloos, Christoph Zol_, Philipp Lutat, Martin Henze, Andreas Ulbig,
- Abstract summary: We introduce a simulation environment that replicates the power grid's infrastructure and communication dynamics.
The framework generates diverse, realistic attack data to train machine learning algorithms for detecting and mitigating cyber threats.
It also provides a controlled, flexible platform to evaluate emerging security technologies, including advanced decision support systems.
- Score: 2.0766068042442174
- License:
- Abstract: The power grid is a critical infrastructure essential for public safety and welfare. As its reliance on digital technologies grows, so do its vulnerabilities to sophisticated cyber threats, which could severely disrupt operations. Effective protective measures, such as intrusion detection and decision support systems, are essential to mitigate these risks. Machine learning offers significant potential in this field, yet its effectiveness is constrained by the limited availability of high-quality data due to confidentiality and access restrictions. To address this, we introduce a simulation environment that replicates the power grid's infrastructure and communication dynamics. This environment enables the modeling of complex, multi-stage cyber attacks and defensive responses, using attack trees to outline attacker strategies and game-theoretic approaches to model defender actions. The framework generates diverse, realistic attack data to train machine learning algorithms for detecting and mitigating cyber threats. It also provides a controlled, flexible platform to evaluate emerging security technologies, including advanced decision support systems. The environment is modular and scalable, facilitating the integration of new scenarios without dependence on external components. It supports scenario generation, data modeling, mapping, power flow simulation, and communication traffic analysis in a cohesive chain, capturing all relevant data for cyber security investigations under consistent conditions. Detailed modeling of communication protocols and grid operations offers insights into attack propagation, while datasets undergo validation in laboratory settings to ensure real-world applicability. These datasets are leveraged to train machine learning models for intrusion detection, focusing on their ability to identify complex attack patterns within power grid operations.
Related papers
- Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - Adaptive Cybersecurity: Dynamically Retrainable Firewalls for Real-Time Network Protection [4.169915659794567]
This research introduces "Dynamically Retrainable Firewalls"
Unlike traditional firewalls that rely on static rules to inspect traffic, these advanced systems leverage machine learning algorithms to analyze network traffic pattern dynamically and identify threats.
It also discusses strategies to improve performance, reduce latency, optimize resource utilization, and address integration issues with present-day concepts such as Zero Trust and mixed environments.
arXiv Detail & Related papers (2025-01-14T00:04:35Z) - AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
The transition to smart grids has increased the vulnerability of electrical power systems to advanced cyber threats.
We propose a co-simulation framework that employs an autonomous agent to execute modular cyberattacks.
Our approach offers a flexible, versatile source for data generation, aiding in faster prototyping and reducing development resources and time.
arXiv Detail & Related papers (2024-12-05T08:56:38Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - An Approach to Abstract Multi-stage Cyberattack Data Generation for ML-Based IDS in Smart Grids [2.5655761752240505]
We propose a method to generate synthetic data using a graph-based approach for training machine learning models in smart grids.
We use an abstract form of multi-stage cyberattacks defined via graph formulations and simulate the propagation behavior of attacks in the network.
arXiv Detail & Related papers (2023-12-21T11:07:51Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
This study proposes a model for generating synthetic data of multi-stage cyber attacks in the power grid.
It uses attack trees to model the attacker's sequence of steps and a game-theoretic approach to incorporate the defender's actions.
arXiv Detail & Related papers (2023-12-21T09:54:18Z) - Stepping out of Flatland: Discovering Behavior Patterns as Topological Structures in Cyber Hypergraphs [0.7835894511242797]
We present a novel framework based in the theory of hypergraphs and topology to understand data from cyber networks.
We will demonstrate concrete examples in a large-scale cyber network dataset.
arXiv Detail & Related papers (2023-11-08T00:00:33Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
Adversarial example detection plays a vital role in adaptive cyber defense, especially in the face of rapidly evolving attacks.
We propose a novel approach that leverages the power of BERT (Bidirectional Representations from Transformers) and introduces the concept of Space Exploration Features.
arXiv Detail & Related papers (2023-08-29T23:02:26Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.