論文の概要: Privacy-Aware Joint DNN Model Deployment and Partitioning Optimization for Collaborative Edge Inference Services
- arxiv url: http://arxiv.org/abs/2502.16091v3
- Date: Thu, 29 May 2025 06:41:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 15:42:33.310264
- Title: Privacy-Aware Joint DNN Model Deployment and Partitioning Optimization for Collaborative Edge Inference Services
- Title(参考訳): 協調エッジ推論サービスのためのプライバシを考慮した共同DNNモデル展開と分割最適化
- Authors: Zhipeng Cheng, Xiaoyu Xia, Hong Wang, Minghui Liwang, Ning Chen, Xuwei Fan, Xianbin Wang,
- Abstract要約: エッジ推論(EI)は、クラウドベースのDeep Neural Network(DNN)推論サービスの増加に対処する、有望なパラダイムとして登場した。
リソース制約のあるエッジデバイスにDNNモデルをデプロイすることは、制限/ストレージリソース、動的サービス要求、プライバシーリスクの増大など、さらなる課題をもたらす。
本稿では,DNNモデルデプロイメント,ユーザサーバアソシエーション,モデルパーティショニングを共同で扱う,新たなプライバシ対応最適化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.408050197587654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge inference (EI) has emerged as a promising paradigm to address the growing limitations of cloud-based Deep Neural Network (DNN) inference services, such as high response latency, limited scalability, and severe data privacy exposure. However, deploying DNN models on resource-constrained edge devices introduces additional challenges, including limited computation/storage resources, dynamic service demands, and heightened privacy risks. To tackle these issues, this paper presents a novel privacy-aware optimization framework that jointly addresses DNN model deployment, user-server association, and model partitioning, with the goal of minimizing long-term average inference delay under resource and privacy constraints. The problem is formulated as a complex, NP-hard stochastic optimization. To efficiently handle system dynamics and computational complexity, we employ a Lyapunov-based approach to transform the long-term objective into tractable per-slot decisions. Furthermore, we introduce a coalition formation game to enable adaptive user-server association and design a greedy algorithm for model deployment within each coalition. Extensive simulations demonstrate that the proposed algorithm significantly reduces inference delay and consistently satisfies privacy constraints, outperforming state-of-the-art baselines across diverse scenarios.
- Abstract(参考訳): エッジ推論(EI)は、クラウドベースのDeep Neural Network(DNN)推論サービスの増大する制限に対処する、有望なパラダイムとして登場した。
しかし、リソース制約のあるエッジデバイスにDNNモデルをデプロイすることは、計算/ストレージリソースの制限、動的サービス要求、プライバシーリスクの増大など、さらなる課題をもたらす。
そこで本稿では,DNNモデルデプロイメント,ユーザサーバアソシエーション,モデルパーティショニングに共同で対処する,新たなプライバシ対応最適化フレームワークを提案する。
この問題はNP-ハード確率最適化として定式化されている。
システムダイナミクスと計算複雑性を効率的に扱うために,Lyapunov をベースとしたアプローチを用いて長期目標をトラクタブルなスロット毎の決定に変換する。
さらに、アダプティブなユーザサーバアソシエーションを実現するための連立形成ゲームを導入し、各連立内のモデル展開のためのグレディなアルゴリズムを設計する。
大規模なシミュレーションにより、提案アルゴリズムは推論遅延を著しく低減し、プライバシー制約を一貫して満たし、さまざまなシナリオで最先端のベースラインを上回ります。
関連論文リスト
- Robust DNN Partitioning and Resource Allocation Under Uncertain Inference Time [12.359690205873335]
エッジインテリジェンスシステムでは、ディープニューラルネットワーク(DNN)のパーティショニングとデータオフロードが、リソース制約のあるモバイルデバイスに対してリアルタイムなタスク推論を提供する。
本稿では,タスクの確率的期限を満たしながら,モバイルデバイスの総エネルギー消費を最小化するためのロバストな最適化手法を提案する。
論文 参考訳(メタデータ) (2025-03-27T13:06:26Z) - Resource-Efficient Generative AI Model Deployment in Mobile Edge Networks [15.958822667638405]
エッジ上の利用可能なリソースの不足は、生成AIモデルをデプロイする上で大きな課題を生じさせる。
我々は、エッジ上に生成するAIモデルのデプロイメントを適切に管理することを目的とした、協調的なエッジクラウドフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-09T03:17:28Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Power Control with QoS Guarantees: A Differentiable Projection-based
Unsupervised Learning Framework [14.518558523319518]
NPハード無線リソース割り当て問題を解決する潜在的なソリューションとして、ディープニューラルネットワーク(DNN)が登場している。
マルチユーザチャネルにおける古典的電力制御問題を解決するために,教師なし学習フレームワークを提案する。
提案手法は,データレートを向上するだけでなく,既存の計算に比べて制約違反の確率をゼロにすることを示す。
論文 参考訳(メタデータ) (2023-05-31T14:11:51Z) - Scheduling Inference Workloads on Distributed Edge Clusters with
Reinforcement Learning [11.007816552466952]
本稿では,エッジネットワークにおける予測クエリを短時間でスケジューリングする問題に焦点をあてる。
シミュレーションにより,大規模ISPの現実的なネットワーク設定とワークロードにおけるいくつかのポリシーを解析する。
我々は、強化学習に基づくスケジューリングアルゴリズムASETを設計し、システム条件に応じてその決定を適応させることができる。
論文 参考訳(メタデータ) (2023-01-31T13:23:34Z) - Architecture Aware Latency Constrained Sparse Neural Networks [35.50683537052815]
本稿では,CNNモデルの作成と高速化を目的として,遅延制約付きスパースフレームワークを設計する。
また,効率的な計算のための新しいスパース畳み込みアルゴリズムを提案する。
我々のシステム・アルゴリズムの共同設計フレームワークは、リソース制約のあるモバイルデバイス上でのネットワークの精度とレイテンシのフロンティアをはるかに向上させることができる。
論文 参考訳(メタデータ) (2021-09-01T03:41:31Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
本稿では,プロアクティブキャッシングのための新しいフレームワークを提案する。
モデルベースの最適化とデータ駆動技術を組み合わせて、最適化問題をグレースケールのイメージに変換する。
数値計算の結果,提案手法は71.6%の計算時間を0.8%のコストで削減できることがわかった。
論文 参考訳(メタデータ) (2021-08-15T21:32:47Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z) - Joint Multi-User DNN Partitioning and Computational Resource Allocation
for Collaborative Edge Intelligence [21.55340197267767]
Mobile Edge Computing(MEC)は、ネットワークエッジにさまざまなリソースを提供する有望なサポートアーキテクチャとして登場した。
エッジサーバの助けを借りて、ユーザ機器(UE)はディープニューラルネットワーク(DNN)ベースのAIアプリケーションを実行することができる。
最適解を時間内に達成できるIAO (Iterative Alternating Optimization) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-15T09:40:13Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。