論文の概要: Patch Stitching Data Augmentation for Cancer Classification in Pathology Images
- arxiv url: http://arxiv.org/abs/2502.16162v1
- Date: Sat, 22 Feb 2025 09:34:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:44.328462
- Title: Patch Stitching Data Augmentation for Cancer Classification in Pathology Images
- Title(参考訳): 病理画像における癌分類のためのパッチストレッチデータ拡張
- Authors: Jiamu Wang, Chang-Su Kim, Jin Tae Kwak,
- Abstract要約: 本稿では,既存の病理画像から新たな病理画像を生成するための,効率的かつ効果的なデータ拡張戦略を提案する。
提案手法を評価するために, 大腸癌データセットを2セット使用し, より優れた分類結果を得た。
- 参考スコア(独自算出の注目度): 16.17602751703175
- License:
- Abstract: Computational pathology, integrating computational methods and digital imaging, has shown to be effective in advancing disease diagnosis and prognosis. In recent years, the development of machine learning and deep learning has greatly bolstered the power of computational pathology. However, there still remains the issue of data scarcity and data imbalance, which can have an adversarial effect on any computational method. In this paper, we introduce an efficient and effective data augmentation strategy to generate new pathology images from the existing pathology images and thus enrich datasets without additional data collection or annotation costs. To evaluate the proposed method, we employed two sets of colorectal cancer datasets and obtained improved classification results, suggesting that the proposed simple approach holds the potential for alleviating the data scarcity and imbalance in computational pathology.
- Abstract(参考訳): コンピュータ病理学、計算手法とデジタル画像の統合は、疾患の診断と予後の進歩に有効であることが示されている。
近年、機械学習とディープラーニングの発展は、計算病理学の力を大いに押し上げている。
しかし、データ不足とデータ不均衡の問題はまだ残っており、これはあらゆる計算方法に逆効果をもたらす可能性がある。
本稿では,既存の病理画像から新たな病理画像を生成し,データ収集やアノテーションのコストを伴わずにデータセットを充実させる,効率的で効果的なデータ拡張戦略を提案する。
提案手法を評価するために, 大腸癌データセットを2セット使用し, 分類結果を改良し, 提案手法は, 計算病理学におけるデータ不足と不均衡を緩和する可能性を秘めていることを示す。
関連論文リスト
- TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
トポロジカルデータ分析は、異なる色チャネルにわたるトポロジカルパターンの評価を通じて重要な情報を抽出することで、ユニークなアプローチを提供する。
卵巣癌と乳癌では, トポロジカルな特徴を取り入れることで, 腫瘍型の分化が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-13T12:24:13Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
医療画像データセットは、コンピュータ支援診断、治療計画、医学研究に使用される訓練モデルに不可欠である。
データ分散のばらつき、データの不足、ジェネリックイメージから事前トレーニングされたモデルを使用する場合の転送学習の問題などである。
本稿では,データ不足と分散不均衡の影響を軽減するために,一連の手法を統合したシームズニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T16:59:27Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
本稿では,正対損失緩和とランダムな文サンプリングを含む新たな微調整手法を提案する。
提案手法は,胸部X線データセットと3つの事前訓練モデル間のゼロショット病理分類を一貫して改善する。
論文 参考訳(メタデータ) (2022-12-14T06:04:18Z) - A review of machine learning approaches, challenges and prospects for
computational tumor pathology [1.2036642553849346]
腫瘍計算病理学は、データ統合、ハードウェア処理、ネットワーク共有帯域幅、機械学習技術に挑戦する。
本稿では,病的・技術的観点から,計算病理学における前処理手法について検討する。
計算病理学応用における機械学習の課題と展望について論じる。
論文 参考訳(メタデータ) (2022-05-31T14:56:01Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A Survey on Graph-Based Deep Learning for Computational Histopathology [36.58189530598098]
我々は、デジタル病理と生検画像パッチの分析に機械学習と深層学習の利用が急速に拡大しているのを目撃した。
畳み込みニューラルネットワークを用いたパッチワイド機能に関する従来の学習は、グローバルなコンテキスト情報をキャプチャしようとする際のモデルを制限する。
本稿では,グラフに基づく深層学習の概念的基盤を提供し,腫瘍の局在と分類,腫瘍浸潤とステージング,画像検索,生存予測の現在の成功について論じる。
論文 参考訳(メタデータ) (2021-07-01T07:50:35Z) - Unsupervised anomaly detection in digital pathology using GANs [4.318555434063274]
本稿では,GANを用いた病理組織データにおける異常検出のための新しい教師なし学習手法を提案する。
医用画像に用いられている既存のGAN法と比較して,本手法は病理データの性能を大幅に改善する。
論文 参考訳(メタデータ) (2021-03-16T10:10:12Z) - Cancer image classification based on DenseNet model [3.3516258832067067]
DenseNet Blockに基づく新しい転移性癌画像分類モデルを提案する。
PatchCamelyon(PCam)ベンチマークデータセットのわずかに修正されたバージョンに対する提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-11-23T03:05:42Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。