論文の概要: An End-to-End Homomorphically Encrypted Neural Network
- arxiv url: http://arxiv.org/abs/2502.16176v1
- Date: Sat, 22 Feb 2025 10:45:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:55:53.709229
- Title: An End-to-End Homomorphically Encrypted Neural Network
- Title(参考訳): 終端から終端まで均一に暗号化されたニューラルネットワーク
- Authors: Marcos Florencio, Luiz Alencar, Bianca Lima,
- Abstract要約: ホモモルフィックニューラルネットワーク(HNN)は、通常のニューラルネットワークに匹敵する精度を維持しながら、完全なプライバシとセキュリティを達成することができる。
微分可能なSoft-Argmaxと呼ばれる新しいレイヤは、暗号化ドメイン内の出力ロジットの校正を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Every commercially available, state-of-the-art neural network consume plain input data, which is a well-known privacy concern. We propose a new architecture based on homomorphic encryption, which allows the neural network to operate on encrypted data. We show that Homomorphic Neural Networks (HNN) can achieve full privacy and security while maintaining levels of accuracy comparable to plain neural networks. We also introduce a new layer, the Differentiable Soft-Argmax, which allows the calibration of output logits in the encrypted domain, raising the entropy of the activation parameters, thus improving the security of the model, while keeping the overall noise below the acceptable noise budget. Experiments were conducted using the Stanford Sentiment Treebank (SST-2) corpora on the DistilBERT base uncased finetuned SST-2 English sentiment analysis model, and the results show that the HNN model can achieve up to 82.5% of the accuracy of the plain model while maintaining full privacy and security.
- Abstract(参考訳): 商用で利用できる最先端のニューラルネットワークはすべて、平易な入力データを消費する。
我々は、ニューラルネットワークが暗号化されたデータを操作することができる、同型暗号化に基づく新しいアーキテクチャを提案する。
我々は,同型ニューラルネットワーク(HNN)が,通常のニューラルネットワークに匹敵する精度を維持しつつ,完全なプライバシとセキュリティを実現することを示す。
また、暗号化された領域における出力ロジットの校正を可能にし、アクティベーションパラメータのエントロピーを高め、許容ノイズ予算以下で全体のノイズを抑えながらモデルの安全性を向上する、微分可能なSoft-Argmaxという新しいレイヤも導入する。
DistilBERTベースでStanford Sentiment Treebank (SST-2) コーパスを用いて実験を行い、HNNモデルは完全なプライバシとセキュリティを維持しつつ、平均モデルの82.5%の精度を達成可能であることを示した。
関連論文リスト
- BrainLeaks: On the Privacy-Preserving Properties of Neuromorphic Architectures against Model Inversion Attacks [3.4673556247932225]
従来の人工知能ニューラルネットワーク(ANN)は、機密データを漏洩する可能性のあるいくつかの攻撃に対して脆弱であることがわかった。
我々の研究は、スパイキングニューラルネットワーク(SNN)の差別化不可能な側面が、固有のプライバシー保護特性をもたらすという直感に動機づけられている。
我々は、SNNをターゲットとした、包括的に設計された新しい逆攻撃戦略を開発する。
論文 参考訳(メタデータ) (2024-02-01T03:16:40Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - Shielding the Unseen: Privacy Protection through Poisoning NeRF with
Spatial Deformation [59.302770084115814]
本稿では,Neural Radiance Fields(NeRF)モデルの生成機能に対して,ユーザのプライバシを保護する革新的な手法を提案する。
我々の新しい中毒攻撃法は、人間の目では認識できないが、NeRFが正確に3Dシーンを再構築する能力を損なうのに十分強力である観察ビューの変化を誘発する。
我々は、高品質の画像を含む29の現実世界シーンからなる2つの共通のNeRFベンチマークデータセットに対して、我々のアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2023-10-04T19:35:56Z) - Heterogeneous Randomized Response for Differential Privacy in Graph
Neural Networks [18.4005860362025]
グラフニューラルネットワーク(GNN)は、プライバシ推論攻撃(PIA)の影響を受けやすい
差分プライバシ(DP)保証の下で,ノードの特徴やエッジをPIAに対して保護する機構を提案する。
ノードの特徴とエッジの両レベルで、より優れたランダム化確率とより厳密なエラー境界を導出する。
論文 参考訳(メタデータ) (2022-11-10T18:52:46Z) - Spikformer: When Spiking Neural Network Meets Transformer [102.91330530210037]
本稿では,スパイキングニューラルネットワーク(SNN)と自己認識機構という,生物学的にもっとも有効な2つの構造について考察する。
我々は、スパイキング・セルフ・アテンション(SSA)と、スパイキング・トランスフォーマー(Spikformer)という強力なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-29T14:16:49Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
我々は,網膜卵管刺激によるガウスフィルタとランク順符号化の差異を取り入れたスポーキング畳み込みニューラルネットワーク(SCNN)を提示した。
このモデルは、Nengoライブラリーで実装されているように、スパイキングニューロンで動作するように適応されたバックプロパゲーションアルゴリズムの変種を用いて訓練される。
ネットワークは最大90%の精度で達成され、損失はクロスエントロピー関数を用いて計算される。
論文 参考訳(メタデータ) (2021-05-29T15:28:30Z) - Probabilistic Selective Encryption of Convolutional Neural Networks for
Hierarchical Services [13.643603852209091]
我々は,CNNモデルを不正アクセスから保護するために,選択的暗号化(SE)アルゴリズムを提案する。
提案した確率的選択戦略(PSS)を用いて重要なモデルパラメータを選択する。
次に、DPRM(Distributed Preserving Random Mask)と呼ばれる設計された暗号化手法で、最も重要なパラメータを暗号化する。
論文 参考訳(メタデータ) (2021-05-26T06:15:58Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Noise-Response Analysis of Deep Neural Networks Quantifies Robustness
and Fingerprints Structural Malware [48.7072217216104]
ディープ・ニューラル・ネットワーク(DNN)は構造的マルウェア(すなわち、重みと活性化経路)を持つ
バックドアの検出は一般的に困難であり、既存の検出手法は計算に高価であり、膨大なリソースを必要とする(トレーニングデータへのアクセスなど)。
そこで本研究では,DNNの堅牢性,指紋の非線形性を定量化し,バックドアの検出を可能にする,高速な特徴生成手法を提案する。
実験の結果,既存の手法(秒対秒)よりも高い信頼度でバックドアを正確に検出できることが判明した。
論文 参考訳(メタデータ) (2020-07-31T23:52:58Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects
of Discrete Input Encoding and Non-Linear Activations [9.092733355328251]
スパイキングニューラルネットワーク(SNN)は、敵対的攻撃に対する固有の堅牢性の候補である。
本研究では、勾配に基づく攻撃によるSNNの対向精度が、非スパイク攻撃よりも高いことを示す。
論文 参考訳(メタデータ) (2020-03-23T17:20:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。