A Review of Several Keystroke Dynamics Methods
- URL: http://arxiv.org/abs/2502.16177v1
- Date: Sat, 22 Feb 2025 10:45:44 GMT
- Title: A Review of Several Keystroke Dynamics Methods
- Authors: Soykat Amin, Cristian Di Iorio,
- Abstract summary: Keystroke dynamics is a behavioral biometric that captures an individual's typing patterns for authentication and security applications.<n>This paper presents a comparative analysis of keystroke authentication models using Gaussian Mixture Models (GMM), Mahalanobis Distance-based Classification, and Gunetti Picardi's Distance Metrics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Keystroke dynamics is a behavioral biometric that captures an individual's typing patterns for authentication and security applications. This paper presents a comparative analysis of keystroke authentication models using Gaussian Mixture Models (GMM), Mahalanobis Distance-based Classification, and Gunetti Picardi's Distance Metrics. These models leverage keystroke timing features such as hold time (H), up-down time (UD), and down-down time (DD) extracted from datasets including Aalto, Buffalo and Nanglae-Bhattarakosol. Each model is trained and validated using structured methodologies, with performance evaluated through False Acceptance Rate (FAR), False Rejection Rate (FRR), and Equal Error Rate (EER). The results, visualized through Receiver Operating Characteristic (ROC) curves, highlight the relative strengths and weaknesses of each approach in distinguishing genuine users from impostors.
Related papers
- CBW: Towards Dataset Ownership Verification for Speaker Verification via Clustering-based Backdoor Watermarking [85.68235482145091]
Large-scale speech datasets have become valuable intellectual property.
We propose a novel dataset ownership verification method.
Our approach introduces a clustering-based backdoor watermark (CBW)
We conduct extensive experiments on benchmark datasets, verifying the effectiveness and robustness of our method against potential adaptive attacks.
arXiv Detail & Related papers (2025-03-02T02:02:57Z) - LOCKEY: A Novel Approach to Model Authentication and Deepfake Tracking [26.559909295466586]
We present a novel approach to deter unauthorized deepfakes and enable user tracking in generative models.
Our method involves providing users with model parameters accompanied by a unique, user-specific key.
For user tracking, the model embeds the user's unique key as a watermark within the generated content.
arXiv Detail & Related papers (2024-09-12T04:28:22Z) - DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation [18.77296551727931]
We propose DECIDER, a novel approach that leverages priors from large language models (LLMs) and vision-language models (VLMs) to detect failures in image models.
DECIDER consistently achieves state-of-the-art failure detection performance, significantly outperforming baselines in terms of the overall Matthews correlation coefficient.
arXiv Detail & Related papers (2024-08-01T07:08:11Z) - PASA: Attack Agnostic Unsupervised Adversarial Detection using Prediction & Attribution Sensitivity Analysis [2.5347892611213614]
Deep neural networks for classification are vulnerable to adversarial attacks, where small perturbations to input samples lead to incorrect predictions.
We develop a practical method for this characteristic of model prediction and feature attribution to detect adversarial samples.
Our approach demonstrates competitive performance even when an adversary is aware of the defense mechanism.
arXiv Detail & Related papers (2024-04-12T21:22:21Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Free-text Keystroke Authentication using Transformers: A Comparative
Study of Architectures and Loss Functions [1.0152838128195467]
Keystroke biometrics is a promising approach for user identification and verification, leveraging the unique patterns in individuals' typing behavior.
We propose a Transformer-based network that employs self-attention to extract informative features from keystroke sequences.
Our model surpasses the previous state-of-the-art in free-text keystroke authentication.
arXiv Detail & Related papers (2023-10-18T00:34:26Z) - DyFFPAD: Dynamic Fusion of Convolutional and Handcrafted Features for Fingerprint Presentation Attack Detection [1.9573380763700712]
A presentation attack can be performed by creating a spoof of a user's fingerprint with or without their consent.
This paper presents a dynamic ensemble of deep CNN and handcrafted features to detect presentation attacks.
We have validated our proposed method on benchmark databases from the Liveness Detection Competition.
arXiv Detail & Related papers (2023-08-19T13:46:49Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-distribution (OOD) detection aims to identify OOD data based on representations extracted from well-trained deep models.
We propose a general methodology named watermarking in this paper.
We learn a unified pattern that is superimposed onto features of original data, and the model's detection capability is largely boosted after watermarking.
arXiv Detail & Related papers (2022-10-27T06:12:32Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Taming Self-Supervised Learning for Presentation Attack Detection:
De-Folding and De-Mixing [42.733666815035534]
Biometric systems are vulnerable to Presentation Attacks performed using various Presentation Attack Instruments (PAIs)
We propose a self-supervised learning-based method, denoted as DF-DM.
DF-DM is based on a global-local view coupled with De-Folding and De-Mixing to derive the task-specific representation for PAD.
arXiv Detail & Related papers (2021-09-09T08:38:17Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.