rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG
- URL: http://arxiv.org/abs/2410.18985v1
- Date: Wed, 09 Oct 2024 11:17:02 GMT
- Title: rECGnition_v1.0: Arrhythmia detection using cardiologist-inspired multi-modal architecture incorporating demographic attributes in ECG
- Authors: Shreya Srivastava, Durgesh Kumar, Jatin Bedi, Sandeep Seth, Deepak Sharma,
- Abstract summary: We propose a novel multi-modal methodology for ECG analysis and arrhythmia classification.
The proposed rECGnition_v1.0 algorithm paves the way for its deployment in clinics.
- Score: 3.0473237906125954
- License:
- Abstract: A substantial amount of variability in ECG manifested due to patient characteristics hinders the adoption of automated analysis algorithms in clinical practice. None of the ECG annotators developed till date consider the characteristics of the patients in a multi-modal architecture. We employed the XGBoost model to analyze the UCI Arrhythmia dataset, linking patient characteristics to ECG morphological changes. The model accurately classified patient gender using discriminative ECG features with 87.75% confidence. We propose a novel multi-modal methodology for ECG analysis and arrhythmia classification that can help defy the variability in ECG related to patient-specific conditions. This deep learning algorithm, named rECGnition_v1.0 (robust ECG abnormality detection Version 1), fuses Beat Morphology with Patient Characteristics to create a discriminative feature map that understands the internal correlation between both modalities. A Squeeze and Excitation based Patient characteristic Encoding Network (SEPcEnet) has been introduced, considering the patient's demographics. The trained model outperformed the various existing algorithms by achieving the overall F1-score of 0.986 for the ten arrhythmia class classification in the MITDB and achieved near perfect prediction scores of ~0.99 for LBBB, RBBB, Premature ventricular contraction beat, Atrial premature beat and Paced beat. Subsequently, the methodology was validated across INCARTDB, EDB and different class groups of MITDB using transfer learning. The generalizability test provided F1-scores of 0.980, 0.946, 0.977, and 0.980 for INCARTDB, EDB, MITDB AAMI, and MITDB Normal vs. Abnormal Classification, respectively. Therefore, with a more enhanced and comprehensive understanding of the patient being examined and their ECG for diverse CVD manifestations, the proposed rECGnition_v1.0 algorithm paves the way for its deployment in clinics.
Related papers
- EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Deep learning based ECG segmentation for delineation of diverse arrhythmias [0.0]
We introduce a U-Net-like segmentation model for ECG delineation with a particular focus on diverse arrhythmias.
This is followed by a post-processing algorithm which removes noise and automatically determines the boundaries of P, QRS, and T waves.
Our model has been trained on a diverse dataset and evaluated against the LUDB and QTDB datasets to show strong performance, with F1-scores exceeding 99% for QRS and T waves, and over 97% for P waves in the LUDB dataset.
arXiv Detail & Related papers (2023-04-13T03:20:45Z) - Two-stream Network for ECG Signal Classification [3.222802562733787]
This paper explores an effective algorithm for automatic classifications of multi-classes of heartbeat types based on ECG.
A two-stream architecture is used in this paper and presents an enhanced version of ECG recognition based on this.
Results on the MIT-BIH Arrhythmia Database demonstrate that the proposed algorithm performs an accuracy of 99.38%.
arXiv Detail & Related papers (2022-10-05T08:14:51Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification [0.9449650062296824]
In clinical settings, a cardiologist makes a diagnosis based on the standard 12-channel ECG recording.
We propose a model that leverages the multiple-channel information available in the standard ECG recordings and learns patterns at the beat, rhythm, and channel level.
The experimental results show that our model achieved a macro-averaged ROC-AUC score of 0.9216, mean accuracy of 88.85%, and a maximum F1 score of 0.8057 on the PTB-XL dataset.
arXiv Detail & Related papers (2022-04-06T16:29:10Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.