論文の概要: Exploring Sentiment Manipulation by LLM-Enabled Intelligent Trading Agents
- arxiv url: http://arxiv.org/abs/2502.16343v1
- Date: Sat, 22 Feb 2025 20:17:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:56:11.975542
- Title: Exploring Sentiment Manipulation by LLM-Enabled Intelligent Trading Agents
- Title(参考訳): LLM型インテリジェントトレーディングエージェントによる感性操作の探索
- Authors: David Byrd,
- Abstract要約: 強化学習は、人間のフィードバックから言語モデルの微調整と結びついているため、関心の復活を経験している。
我々は、継続的な深層強化学習に基づく知的取引業者の初めての調査であると考えるものを提示する。
我々は、模擬金融市場におけるエージェントのパフォーマンスと影響を実証的に調査し、その全報酬を最適化することを学び、そこから得られるポストの感情を操ることで利益を増大させることを見出した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Companies across all economic sectors continue to deploy large language models at a rapid pace. Reinforcement learning is experiencing a resurgence of interest due to its association with the fine-tuning of language models from human feedback. Tool-chain language models control task-specific agents; if the converse has not already appeared, it soon will. In this paper, we present what we believe is the first investigation of an intelligent trading agent based on continuous deep reinforcement learning that also controls a large language model with which it can post to a social media feed observed by other traders. We empirically investigate the performance and impact of such an agent in a simulated financial market, finding that it learns to optimize its total reward, and thereby augment its profit, by manipulating the sentiment of the posts it produces. The paper concludes with discussion, limitations, and suggestions for future work.
- Abstract(参考訳): あらゆる経済分野の企業は、大きな言語モデルを急速なペースで展開し続けている。
強化学習は、人間のフィードバックから言語モデルの微調整と結びついているため、関心の復活を経験している。
ツールチェーン言語モデルはタスク固有のエージェントを制御する。
本稿では,他のトレーダーが観察したソーシャルメディアフィードに投稿可能な大規模言語モデルも制御する,継続的深層強化学習に基づく知的取引エージェントの初回調査について述べる。
我々は、模擬金融市場におけるエージェントのパフォーマンスと影響を実証的に調査し、その全報酬を最適化することを学び、そこから得られるポストの感情を操ることで利益を増大させることを見出した。
論文は、今後の仕事に関する議論、制限、提案で締めくくっている。
関連論文リスト
- Training Language Models for Social Deduction with Multi-Agent Reinforcement Learning [31.196865401472664]
自然言語の環境に関する生産的な議論を人間による実演なしで行うように、言語モデルを訓練する。
我々はエージェントの目標を利用して、コミュニケーションを誘導する高密度報酬信号として、世界の有用な情報を予測する。
我々は、容疑者の告発や証拠提供など、我々の技術による創発的行動を分析し、強力な議論を可能にすることを発見した。
論文 参考訳(メタデータ) (2025-02-09T22:44:45Z) - QLASS: Boosting Language Agent Inference via Q-Guided Stepwise Search [89.97082652805904]
提案するQLASS(Q-guided Language Agent Stepwise Search)は,Q-valueを推定してアノテーションを自動的に生成する。
ステップワイズガイダンスにより、言語エージェントが長期的価値に適応できるようにQ誘導型生成戦略を提案する。
我々はQLASSが質的分析によってより効果的な意思決定につながることを実証的に実証した。
論文 参考訳(メタデータ) (2025-02-04T18:58:31Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
我々は、人間の指示なしにタスクを予測および開始できるプロアクティブエージェントを開発するという課題に取り組む。
まず,実世界の人的活動を収集し,前向きなタスク予測を生成する。
これらの予測は、ヒトのアノテータによって受け入れられるか拒否されるかのどちらかとしてラベル付けされる。
ラベル付きデータは、人間の判断をシミュレートする報酬モデルをトレーニングするために使用される。
論文 参考訳(メタデータ) (2024-10-16T08:24:09Z) - Persuasion Games using Large Language Models [0.0]
大型言語モデル (LLM) は、人間のような文章を解釈し、生成することのできる、恐ろしい道具として登場した。
本稿では,LCMがユーザ視点を形作り,その決定を特定のタスクに影響を及ぼす可能性について考察する。
この機能は、投資、クレジットカード、保険など、さまざまな分野のアプリケーションを見つける。
論文 参考訳(メタデータ) (2024-08-28T15:50:41Z) - Mental Modeling of Reinforcement Learning Agents by Language Models [14.668006477454616]
この研究は、いかに大きな言語モデルがエージェントのメンタルモデルを構築することができるか、初めて実証的に検証する。
本研究は, LLMを用いたRL剤の挙動解明の可能性を明らかにする。
論文 参考訳(メタデータ) (2024-06-26T17:14:45Z) - QuantAgent: Seeking Holy Grail in Trading by Self-Improving Large
Language Model [14.800710112671226]
本稿では,ドメイン固有の知識基盤を効率的に構築し,統合する上での課題に対処する,原則的枠組みを提案する。
内側のループでは、エージェントは知識ベースから引き出すことで応答を洗練し、外側のループでは、これらの応答は現実世界のシナリオでテストされる。
我々はこのフレームワークを、QuantAgentという名のトレーディングシグナルをマイニングするための自律エージェントを通じてインスタンス化する。
論文 参考訳(メタデータ) (2024-02-06T06:47:14Z) - Cognitive Architectures for Language Agents [44.89258267600489]
言語エージェントのための認知アーキテクチャ(CoALA)を提案する。
CoALAはモジュラーメモリコンポーネントを備えた言語エージェント、内部メモリと外部環境と相互作用する構造化されたアクションスペース、アクションを選択するための一般的な意思決定プロセスを記述する。
我々は、CoALAを使用して、振り返りによる調査と、最近の多くの作業の組織化を行い、より有能なエージェントに対する行動可能な方向を前向きに特定します。
論文 参考訳(メタデータ) (2023-09-05T17:56:20Z) - Retroformer: Retrospective Large Language Agents with Policy Gradient Optimization [103.70896967077294]
本稿では,レトロスペクティブモデルを学習することで,大規模言語エージェントを強化するための原則的枠組みを提案する。
提案するエージェントアーキテクチャは,事前学習した言語モデルを微調整するために,複数の環境やタスクにまたがる報酬から学習する。
様々なタスクの実験結果から、言語エージェントは時間とともに改善することが示された。
論文 参考訳(メタデータ) (2023-08-04T06:14:23Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
本研究では, 分散制御, 生の知覚観察, コストのかかるコミュニケーション, 様々な実施環境下でインスタンス化された多目的タスクといった課題に対処する。
我々は,LLMの常識知識,推論能力,言語理解,テキスト生成能力を活用し,認知に触発されたモジュラーフレームワークにシームレスに組み込む。
C-WAH と TDW-MAT を用いた実験により, GPT-4 で駆動される CoELA が, 強い計画に基づく手法を超越し, 創発的な効果的なコミュニケーションを示すことを示した。
論文 参考訳(メタデータ) (2023-07-05T17:59:27Z) - Commonsense Knowledge Transfer for Pre-trained Language Models [83.01121484432801]
ニューラルコモンセンス知識モデルに格納されたコモンセンス知識を汎用的な事前学習言語モデルに転送するフレームワークであるコモンセンス知識伝達を導入する。
まず、一般的なテキストを利用して、ニューラルコモンセンス知識モデルからコモンセンス知識を抽出するクエリを形成する。
次に、コモンセンスマスクの埋め込みとコモンセンスの関係予測という2つの自己教師対象で言語モデルを洗練する。
論文 参考訳(メタデータ) (2023-06-04T15:44:51Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。