論文の概要: Bayesian Social Deduction with Graph-Informed Language Models
- arxiv url: http://arxiv.org/abs/2506.17788v1
- Date: Sat, 21 Jun 2025 18:45:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.585598
- Title: Bayesian Social Deduction with Graph-Informed Language Models
- Title(参考訳): グラフインフォームド言語モデルを用いたベイズ社会推論
- Authors: Shahab Rahimirad, Guven Gergerli, Lucia Romero, Angela Qian, Matthew Lyle Olson, Simon Stepputtis, Joseph Campbell,
- Abstract要約: 社会的推論は、大きな言語モデルにとって難しい課題である。
本稿では,信念推論を構造化確率モデルに外部化するハイブリッド推論フレームワークを提案する。
提案手法はエージェント・エージェント・プレイにおけるより大きなモデルとの競合性能を実現する。
- 参考スコア(独自算出の注目度): 3.7540464038118633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social reasoning - inferring unobservable beliefs and intentions from partial observations of other agents - remains a challenging task for large language models (LLMs). We evaluate the limits of current reasoning language models in the social deduction game Avalon and find that while the largest models demonstrate strong performance, they require extensive test-time inference and degrade sharply when distilled to smaller, real-time-capable variants. To address this, we introduce a hybrid reasoning framework that externalizes belief inference to a structured probabilistic model, while using an LLM for language understanding and interaction. Our approach achieves competitive performance with much larger models in Agent-Agent play and, notably, is the first language agent to defeat human players in a controlled study - achieving a 67% win rate and receiving higher qualitative ratings than both reasoning baselines and human teammates. We release code, models, and a dataset to support future work on social reasoning in LLM agents, which can be found at https://camp-lab-purdue.github.io/bayesian-social-deduction/
- Abstract(参考訳): 社会的推論 - 他のエージェントの部分的な観察から観測不可能な信念と意図を推測する - は、大きな言語モデル(LLM)にとって難しい課題である。
社会的推論ゲーム『アバロン』における現在の推論言語モデルの限界を評価し,最大のモデルは高い性能を示す一方で,より小型でリアルタイムに使用できる変種に蒸留した場合は,広範囲なテスト時間推定と急激な劣化が必要であることを見出した。
そこで本稿では,言語理解と対話にLLMを用いながら,信念推論を構造化確率モデルに外部化するハイブリッド推論フレームワークを提案する。
我々のアプローチはエージェント・エージェント・プレイにおけるはるかに大きなモデルとの競争性能を達成し、特に、コントロールされた研究において、人間のプレイヤーを破る最初の言語エージェントである。
LLMエージェントの今後の社会的推論を支援するためのコード、モデル、データセットを、https://camp-lab-purdue.github.io/bayesian-social-deduction/で公開しています。
関連論文リスト
- A Probability--Quality Trade-off in Aligned Language Models and its Relation to Sampling Adaptors [50.046717886067555]
一致した言語モデルからコーパスをサンプリングする場合,文字列の平均報酬と平均ログ類似度との間にはトレードオフが存在することを示す。
我々は、この現象を形式的に処理し、サンプリングアダプタの選択が、どれだけの確率で報酬を交換できるかを選択できるかを実証する。
論文 参考訳(メタデータ) (2024-06-14T17:38:21Z) - Probing the Multi-turn Planning Capabilities of LLMs via 20 Question
Games [14.063311955315077]
大規模言語モデル(LLM)は、明らかに求められている質問に答えるのに効果的である。
不明瞭なクエリに直面した場合、予測不能に動作し、誤った出力を生成することができる。
このことは、曖昧さを効果的に解決するために明確化を問うことができる知的エージェントの開発の必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2023-10-02T16:55:37Z) - A Sentence is Worth a Thousand Pictures: Can Large Language Models Understand Hum4n L4ngu4ge and the W0rld behind W0rds? [2.7342737448775534]
LLM(Large Language Models)は、人間の言語的パフォーマンスに関する主張と関連付けられている。
対象認知システムの理論的に有意な表現としてLLMの寄与を分析する。
我々は,より高い処理レベルからのトップダウンフィードバックを通じて,モデルが全体像を見る能力を評価する。
論文 参考訳(メタデータ) (2023-07-26T18:58:53Z) - The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling
Probabilistic Social Inferences from Linguistic Inputs [50.32802502923367]
確率的目標推論領域における言語駆動の過程と社会的推論への影響について検討する。
本稿では,エージェントシナリオの言語入力から目標推定を行うニューロシンボリックモデルを提案する。
我々のモデルは人間の反応パターンと密に一致し、LLM単独の使用よりも人間の判断をより良く予測する。
論文 参考訳(メタデータ) (2023-06-25T19:38:01Z) - Chain of Hindsight Aligns Language Models with Feedback [62.68665658130472]
我々は,その極性に関係なく,任意の形式のフィードバックから学習し,最適化が容易な新しい手法であるChain of Hindsightを提案する。
我々は、あらゆる種類のフィードバックを文のシーケンスに変換し、それをモデルを微調整するために使用する。
そうすることで、モデルはフィードバックに基づいて出力を生成するように訓練され、負の属性やエラーを特定し修正する。
論文 参考訳(メタデータ) (2023-02-06T10:28:16Z) - Multimodal Chain-of-Thought Reasoning in Language Models [94.70184390935661]
言語(テキスト)と視覚(画像)のモダリティを2段階のフレームワークに組み込んだマルチモーダルCoTを提案する。
その結果,ScienceQA と A-OKVQA のベンチマークは,提案手法の有効性を示した。
論文 参考訳(メタデータ) (2023-02-02T07:51:19Z) - Structured, flexible, and robust: benchmarking and improving large
language models towards more human-like behavior in out-of-distribution
reasoning tasks [39.39138995087475]
言語単独で統計的パターンを学習することで、どの程度の人間的な思考を捉えることができるのかを問う。
本ベンチマークは2つの問題解決領域(計画と説明生成)を含み,一般化を必要とするように設計されている。
このベンチマークでは、人間はLSMよりもはるかに堅牢であることが分かりました。
論文 参考訳(メタデータ) (2022-05-11T18:14:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。