Understanding Fixed Predictions via Confined Regions
- URL: http://arxiv.org/abs/2502.16380v1
- Date: Sat, 22 Feb 2025 23:06:10 GMT
- Title: Understanding Fixed Predictions via Confined Regions
- Authors: Connor Lawless, Tsui-Wei Weng, Berk Ustun, Madeleine Udell,
- Abstract summary: We develop a new paradigm to identify fixed predictions by finding confined regions in which all individuals receive fixed predictions.<n>Our approach certifies recourse for out-of-sample data, provides interpretable descriptions of confined regions, and runs in seconds on real world datasets.
- Score: 30.421105594069676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models are designed to predict outcomes using features about an individual, but fail to take into account how individuals can change them. Consequently, models can assign fixed predictions that deny individuals recourse to change their outcome. This work develops a new paradigm to identify fixed predictions by finding confined regions in which all individuals receive fixed predictions. We introduce the first method, ReVer, for this task, using tools from mixed-integer quadratically constrained programming. Our approach certifies recourse for out-of-sample data, provides interpretable descriptions of confined regions, and runs in seconds on real world datasets. We conduct a comprehensive empirical study of confined regions across diverse applications. Our results highlight that existing point-wise verification methods fail to discover confined regions, while ReVer provably succeeds.
Related papers
- Regression Trees for Fast and Adaptive Prediction Intervals [2.6763498831034043]
We present a family of methods to calibrate prediction intervals for regression problems with local coverage guarantees.
We create a partition by training regression trees and Random Forests on conformity scores.
Our proposal is versatile, as it applies to various conformity scores and prediction settings.
arXiv Detail & Related papers (2024-02-12T01:17:09Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - Multi-Modal Conformal Prediction Regions with Simple Structures by Optimizing Convex Shape Templates [19.504348671777006]
Conformal prediction is a statistical tool for producing prediction regions for machine learning models that are valid with high probability.
A key component of conformal prediction algorithms is a emphnon-conformity score function that quantifies how different a model's prediction is from the unknown ground truth value.
We propose a method that optimize parameterized emphshape template functions over calibration data, which results in non-conformity score functions that produce prediction regions with minimum volume.
arXiv Detail & Related papers (2023-12-12T17:00:13Z) - Shape Completion with Prediction of Uncertain Regions [4.689234879218989]
In particular, there can be an irreducible uncertainty in extended regions about the presence of entire object parts when given ambiguous object views.
We propose two novel methods for predicting such uncertain regions as straightforward extensions of any method for predicting local spatial occupancy.
We train on this dataset and test each method in shape completion and prediction of uncertain regions for known and novel object instances.
arXiv Detail & Related papers (2023-08-01T08:40:40Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
We argue that devising simpler methods for learning predictors on existing features is a promising direction for future research.
We introduce Domain-Adjusted Regression (DARE), a convex objective for learning a linear predictor that is provably robust under a new model of distribution shift.
Under a natural model, we prove that the DARE solution is the minimax-optimal predictor for a constrained set of test distributions.
arXiv Detail & Related papers (2022-02-14T16:42:16Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
There are demographic biases present in current facial recognition (FR) models.
We introduce our Balanced Faces in the Wild dataset to measure these biases across different ethnic and gender subgroups.
We find that relying on a single score threshold to differentiate between genuine and imposters sample pairs leads to suboptimal results.
We propose a novel domain adaptation learning scheme that uses facial features extracted from state-of-the-art neural networks.
arXiv Detail & Related papers (2021-03-16T15:05:49Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.