論文の概要: Active Learning Classification from a Signal Separation Perspective
- arxiv url: http://arxiv.org/abs/2502.16425v1
- Date: Sun, 23 Feb 2025 03:47:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:04.061092
- Title: Active Learning Classification from a Signal Separation Perspective
- Title(参考訳): 信号分離の観点からのアクティブラーニング分類
- Authors: Hrushikesh Mhaskar, Ryan O'Dowd, Efstratios Tsoukanis,
- Abstract要約: 本稿では,信号分離の原理に触発された新しいクラスタリングと分類フレームワークを提案する。
実世界のサリナスとインドパインズのハイパースペクトルデータセット上で本手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In machine learning, classification is usually seen as a function approximation problem, where the goal is to learn a function that maps input features to class labels. In this paper, we propose a novel clustering and classification framework inspired by the principles of signal separation. This approach enables efficient identification of class supports, even in the presence of overlapping distributions. We validate our method on real-world hyperspectral datasets Salinas and Indian Pines. The experimental results demonstrate that our method is competitive with the state of the art active learning algorithms by using a very small subset of data set as training points.
- Abstract(参考訳): 機械学習では、分類は通常関数近似問題と見なされるが、そこでは入力特徴をクラスラベルにマッピングする関数を学ぶことが目的である。
本稿では,信号分離の原理に着想を得た新しいクラスタリングと分類フレームワークを提案する。
このアプローチは、重複分布が存在する場合でも、クラスサポートの効率的な識別を可能にする。
実世界のサリナスとインドパインズのハイパースペクトルデータセット上で本手法の有効性を検証した。
実験により,本手法は,ごく少数のデータセットをトレーニングポイントとして利用することにより,最先端の能動学習アルゴリズムと競合することを示した。
関連論文リスト
- Graph-Based Semi-Supervised Segregated Lipschitz Learning [0.21847754147782888]
本稿では,グラフ上のリプシッツ学習を用いたデータ分類のための半教師付き学習手法を提案する。
グラフに基づく半教師付き学習フレームワークを開発し、無限ラプラシアンの性質を利用して、少数のサンプルしかラベル付けされていないデータセットにラベルを伝播する。
論文 参考訳(メタデータ) (2024-11-05T17:16:56Z) - Fine-Grained Visual Classification using Self Assessment Classifier [12.596520707449027]
識別的特徴の抽出は、きめ細かい視覚的分類タスクにおいて重要な役割を担っている。
本稿では,画像とトップkの予測クラスを同時に活用する自己評価手法を提案する。
本手法は,CUB200-2011,Stanford Dog,FGVC Aircraft のデータセットに対して,最新の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-05-21T07:41:27Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - Self-Training: A Survey [5.772546394254112]
半教師付きアルゴリズムは、ラベル付き観測の小さなセットとラベルなし観測の大きなセットから予測関数を学習することを目的としている。
近年,自己学習手法が注目されていることは確かである。
本稿では,バイナリクラスとマルチクラス分類のための自己学習手法と,その変種と関連する2つのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-24T11:40:44Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
本稿では,自己教師型学習のためのクラスタリングに基づくプレテキストタスクを用いて,土地被覆マッピングの新しい手法を提案する。
社会的に関係のある2つのアプリケーションに対して,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-08-16T19:35:43Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
クラスごとの説明性を提供するアルゴリズムを開発した。
実験の広範なバッテリーでは、クラス固有の可視化のための手法の能力を実証する。
論文 参考訳(メタデータ) (2020-12-03T18:48:39Z) - SLADE: A Self-Training Framework For Distance Metric Learning [75.54078592084217]
我々は、追加のラベルのないデータを活用することで、検索性能を向上させるための自己学習フレームワークSLADEを提案する。
まず、ラベル付きデータに基づいて教師モデルをトレーニングし、ラベルなしデータに対して擬似ラベルを生成する。
次に、最終機能埋め込みを生成するために、ラベルと擬似ラベルの両方で学生モデルをトレーニングします。
論文 参考訳(メタデータ) (2020-11-20T08:26:10Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。